

AN APPROACH FOR DETERMINATION OF THE ECONOMICALLY OPTIMAL PRODUCTION RATE FROM WATER DRIVE OIL RESERVOIRS

By

Mohamed Gamal el-din Mahfouz Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In the Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
PETROLEUM ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

AN APPROACH FOR DETERMINATION OF THE ECONOMICALLY OPTIMAL PRODUCTION RATE FROM WATER DRIVE OIL RESERVOIRS

By Mohamed Gamal el-din Mahfouz Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In the Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
PETROLEUM ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed Khairy

Professor of Petroleum Engineering
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed El-Banbi

Professor of Petroleum Engineering Faculty of Engineering, Cairo University

Dr. Saad Eldin Mostafa

Assistant Professor of Petroleum Engineering Faculty of Engineering, Future University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

AN APPROACH FOR DETERMINATION OF THE ECONOMICALLY OPTIMAL PRODUCTION RATE FROM WATER DRIVE OIL RESERVOIRS

By Mohamed Gamal el-din Mahfouz Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In the Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
PETROLEUM ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Mohamed Khairy Aly Ahmed, Thesis Main Advisor

Prof. Dr. Ahmed Hamdi El-Banbi, Member

Prof. Dr. Mahmoud Abu El Ela Mohamed, Internal Examiner

Prof. Dr. Abdel Wahab Abdel Hamid Bayoumi, External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Professor of Petroleum Engineering, Faculty of Engineering, Al-Azhar University

Engineer's Name: Mohamed Gamal el-din Mahfouz Ali

Date of Birth : 22 / 5 / 1985

Nationality: Egyptian

E-mail :mgm_pet2006@yahoo.com

Phone :01005201974

Address :2 Atfet Ezz, Elsayed Eldawakhly st., Gamalya,

Cairo, Egypt

Registration Date : 1 / 10 / 2008

Awarding Date : 2016

Degree : Master of Science **Department** : Petroleum Engineering

Supervisors: Prof. Mohamed Khairy Aly

Prof. Ahmed Hamdi El-Banbi Dr. Saad El-Din Mostafa Saad

Examiners: Prof. Abdel Wahab Abdel Hamid Bayoumi (External examiner)

(Faculty of Engineering, Al-Azhar University)

Prof. Mahmoud Abo El-ala Mohamed (Internal examiner)

Prof. Mohamed Khairy Aly (Thesis main advisor)

Prof. Ahmed Hamdi El-Banbi (Member)

Title of Thesis:

An Approach for Determination of the Economically Optimal Production Rate from Water Drive Oil Reservoirs

Key Words: Reservoir Management, Production Optimization, Economic Recovery

Summary :

Experimental design framework was used to define the sensitivities and uncertainties in the parameters that affect on fluid movement and critical rate calculations. An optimization model was built to get the optimum economic combination that achieves the highest net present value. The comparison between the optimization and critical rate correlations results', using actual field data, showed that the optimum combination (Drawdown and perforated interval), achieving the highest economic RF, is completely away from the correlations' results.

Acknowledgements

Firstly, All the praise and gratitude be to Allah, the creator of the universe. The completion of this work was not possible without his grace and mercy.

Secondly, I would like to express my deepest gratitude and appreciation to Prof. Mohamed Khairy, Prof. Ahmed El-Banbi and Dr. Saad el-din Mostafa for their guidance, support, humility and great experience in monitoring this work. On the other hand, I would like to thank the examiners Prof. Abdel Wahab Bayoumi and Prof. Mahmoud Abu El Ela for their valuable comments that enhance the quality of the thesis.

Dedication

I would like to dedicate this thesis to my parents for sacrifices, support, and devotion. They encouraged me to do this work. Also, I would like to dedicate this thesis to my wife (for her prayers, support, and enduring patience) and my new baby "Nadeen".

Table of Contents

Table of Contents	iii
List of Tables	V
List of Figures	vi
Nomenclature	ix
Abstract	xii
Chapter 1: Introduction	1
Chapter 2: Literature Review	3
2.1 Fluid Flow Parameters	3
2.1.1 Impact of the Rock Properties on the Fluid Flow	5
2.1.2 Impact of the Fluid Properties on the Fluid Flow	8
2.1.3 Impact of the Reservoir Conditions/Dimensions on the Fluid Flow	8
2.2 Critical Production Rate and Conning Phenomena	9
2.3 Designing Computer Experiments (Experimental Design)	23
2.3.1 Definitions	23
2.3.2 Sampling Algorithms	23
2.4 Uncertainty and Optimization	28
2.5 Petroleum Economics	30
2.5.1 General Definitions2.5.2 Key Economic Parameters (Economic Yardsticks)	30 32
2.5.3 Cash Flow Model	33
Chapter 3: Statement of the Problem, Research Objectives, and Study Approach 3.1 Statement of the Problem	35
3.2 Research Objectives	35 35
3.3 Study Approach	35
Chapter 4: Simulation Model-Construction 4.1 Static Model	37 37
4.1.1 Grid Selection	37
4.1.2 Property Distribution	38
4.2 Dynamic Model	38
4.2.1 Make Rock Physics Functions	38
4.2.2 Fluid Model	39
4.2.3 Make Aquifer	39
4.2.4 Well Completion Design and VFP Tables	40
4.3 Economic Model	40
4.4 Base Case	41
Chapter 5: Optimization Approach	42
5.1 Build Single Well Model	42
5.2 Sensitivity	54
5.2.1 Sensitive Parameters	54
5.2.2 Modifiers and Controllers	54
5.2.3 Estimator Point/Objective Function	60
5.2.4 Results and Analysis	60

5.3 Uncertainty	63
5.3.1 Parameters Selection5.5.2 Uncertainty Determination	63 63
5.4 Optimization	67
5.4.1 Results 5.4.2 Analysis	68 73
Chapter 6: Field Application 6.1 Actual Field Data 6.2 Critical Rate Estimation 6.3 Optimum Economic Controlling Parameters	81 81 82 84
Chapter 7: Conclusions and Recommendations 7.2 Conclusions 7.3 Recommendations	89 89 90
References Appendix A: Chierici-Ciucci Dimensionless Graphs Appendix B: Critical Rate Curves by Chaney et al.	91 95 99

List of Tables

Table 2.1 - Comparison between critical rate correlation methods	21
Table 2.2 - Cash flow model table sample	33
Table 5.1 - Cartesian static model dimensions	42
Table 5.2 - Radial model dimensions	44
Table 5.3 - Input parameters for the economic model	52
Table 5.4 - Economic model calculation sample	52
Table 5.5 - Summary of the sensitive parameters and the assigned ranges for the	
sensitivity analysis	59
Table 5.6 - Sensitivity analysis results	62
Table 5.7 - First method uncertainty cases using full 3-level factorial design sampling	3
algorithm	64
Table 5.8 - Second method uncertainty cases using Monte-Carlo, Latin-hyper cube	
sampling algorithm	64
Table 5.9 - Sample of the optimization runs' results for the "Most like" case	69
Table 5.10 - The average combinations values for the 27 cases of the first uncertainty	7
method	75
Table 5.11 - The average combinations values for the 3 cases of the second uncertain	ty
method	77
Table 6.1 - Analog field data samples	. 82
Table 6.2 - Critical rate calculations for the first analog field data (Smple#1)	83
Table 6.3 - Critical rate calculations for the second analog field data (Sample#2)	83
Table 6.4 - Testing application data	86
Table 6.5 - Critical rate calculations for the first testing application data (Test#1)	86
Table 6.6 - Critical rate calculations for the second testing application data (Test#2).	87

List of Figures

Fig	. 2.1 -	Ideal radial flow into a wellbore	. 4
		Typical two-phase flow behavior.	
		Original reservoir static condition.	
		Gas and water coning shape.	
_		A sketch of well configurations for calculating average oil column height	
0		below perforations. (by Yang and Wattenbarger)	11
Fig	2.6 -	Illustration of the boundary condition for analytical solution. (by Hoyland, A	
6	-10	et al.)	
Fig	. 2.7 -	Analytical critical rate correlation. (by Hoyland, A. et al)	
		Water and gas coning in a homogeneous formation by Chierici	
_		Water coning schematic by Meyer and Garder.	
		- The development of gas and water coning by Pirson	
		- Classical experimental designs.	
		- Normal distribution function with seven samples from Monte-Carlo	
0		simulation.	25
Fig	2.13	- Outcome of the same input variable using Latin-Hypercube sampling	
		- Nine random samples of two variables (\$A and \$B) with Latin-Hypercube	
0		and Orthogonal Array sampling turned off.	
Fig	2.15	- Nine random samples of two variables (\$A and \$B) with Latin-Hypercube	
0		and Orthogonal Array sampling turned on.	27
Fig	2.16	- Randomly 27 sampled points in three-dimensional space with Latin-	
6		Hypercube and Orthogonal Array sampling turned off	27
Fig	2.17	- Randomly 27 sampled points in three-dimensional space with Latin-	
0		Hypercube and Orthogonal Array sampling turned on.	28
Fig	2.18	- Oil field economic life cycle planning.	
_		· · · · · · · · · · · · · · · · · · ·	37
_		Radial grid type.	
_			43
_		Schematic of uniform gridding.	
_		3D view and cross section of the radial single well model	
_		End points of the "Most Like" relative permeability set	
_		Three different relative permeability sets with 1, 3 and 6 Corey exponent	
0		values of water to oil interaction.	46
Fig	5.6 -	Correlations for PVT data generation.	
		First set - "Most like" PVT data (35° API).	
		Second set - "Low Quality" PVT data (25° API)	
		Third set - "High Quality" PVT data (45° API).	
		- The aquifer connection and direction to the reservoir.	
		- Sensitivity analysis for the economic model parameters using the Spider	
6		Chart	53
Fig	5.12	- Reservoir horizontal permeability (K _h) range.	
		- Reservoir vertical/horizontal permeability ratio (K _v /K _h) range	
_		- W/O Corey's exponent range.	
_		- Oil quality (PVT) range.	
		- Aquifer size (R _{aq}) range.	
Fig	5.17	- Aquifer Permeability (K _{aq}) range.	57
		- Production drawdown (DD) range	

Fig. 5.19 - Perforated interval (Perf.) range.	. 59
Fig. 5.20 - Example of estimator point/objective function calculations	61
Fig. 5.21 - Sensitivity analysis using Tornado chart	62
Fig. 5.22 - NPV calculations of the 27 sampled cases using Monte-Carlo, Latin-hype	r
cube algorithm including the closest runs to P ₁₀ , P ₅₀ and P ₉₀ cases in bold.	. 65
Fig. 5.23 - Cumulative distribution function calculations of the 27 sampled cases using	1g
Monte-Carlo, Latin-hyper cube algorithm	66
Fig. 5.24 - Statistical comparison between the optimization methods	
Fig. 5.25 - Sample of the production profile for two runs (Refine30 and Scope1) from	
the "Most Like" Case.	
Fig. 5.26 - Optimization results using "Full 3-level factorial design" method	
Fig. 5.27 - Optimization results using "Monte-Carlo, Latin-hyper cube" method	
Fig. 5.28 - Results combination for both optimization methods.	.71
Fig. 5.29 - "Most Like" case results. DD in the X axis, NPV on the Y axis and the	
bubble size represents the "Perf." for each run.	.71
Fig. 5.30 - "Most Like" case results. "Perf." is in the X axis and NPV on the Y axis.	
The bubble size represents DD for each run.	
Fig. 5.31 - "Most Like" case results. "Perf." is in the X axis and DD in the Y axis. The	
bubble size represents the NPV for each run.	
Fig. 5.32 - Optimum sets of combinations for "Most like" case.	
Fig. 5.33 - The optimum possible combination ranges.	. /4
Fig. 5.34 - Optimum sets of combinations for the 27 cases of the first uncertainty method.	. 74
Fig. 5.35 - Statistical analysis Optimum sets of combinations for the 27 cases of the	
first uncertainty method.	76
Fig. 5.36 - Optimum sets of combinations for the 3 cases of the second uncertainty method.	. 76
Fig. 5.37 - Comparison between the optimum sets of combinations for the first and	
second optimization method.	. 77
Fig. 5.38 - Optimum sets of combinations for "M1_P1" case with 60 \$/bbl oil price	
versus two additional oil price values (90 and 120 \$/bbl)	. 78
Fig. 5.39 - Optimum sets of combinations for "M1_P14" case with 60 \$/bbl oil price	
versus two additional oil price values (90 and 120 \$/bbl)	
Fig. 5.40 - Optimum sets of combinations for "M1_P18" case with 60 \$/bbl oil price	
versus two additional oil price values (90 and 120 \$/bbl)	. 79
Fig. 5.41 - Optimum sets of combinations for "M1_P14" case with 60 \$/bbl oil price	
versus three additional oil price values (40, 90 and 120 \$/bbl)	. 80
Fig. 5.42 - An approach for determination of the economically optimal production	00
controlling parameters in water drive oil reservoirs	
Fig. 6.1 - Original reservoir static condition.	
Fig. 6.2 - Optimization Vs correlations results (in red and blue colors respectively) for	
the first analog field data (Smple#1)	
the second analog field data (Smple#2).	
Fig. 6.4 - Optimization Vs correlations results (in green and purple colors respectivel	
for the first testing application data (Test#1).	.87
Fig. 6.5 - Optimization Vs correlations results (in teal and orange colors respectively	
for the second testing application data (Test#2)	.00
Fig. A.1 - Dimensionless functions for r _{De} = 5. (After Chierici, Ciucci, and Pizzi, courtesy JPT, August 1964.)	.95

Fig. A.2 - Dimensionless functions for $r_{De} = 10$. (After Chierici, Ciucci, and Pizzi,	
courtesy JPT, August 1964.)	95
Fig. A.3 - Dimensionless functions for $r_{De} = 20$. (After Chierici, Ciucci, and Pizzi,	
courtesy JPT, August 1964.)	96
Fig. A.4 - Dimensionless functions for $r_{De} = 30$. (After Chierici, Ciucci, and Pizzi,	
courtesy JPT, August 1964.)	96
Fig. A.5 - Dimensionless functions for $r_{De} = 40$. (After Chierici, Ciucci, and Pizzi,	
courtesy JPT, August 1964.)	97
Fig. A.6 - Dimensionless functions for $r_{De} = 60$. (After Chierici, Ciucci, and Pizzi,	
courtesy JPT, August 1964.)	97
Fig. A.7 - Dimensionless functions for rDe = 80. (After Chierici, Ciucci, and Pizzi,	
courtesy JPT, August 1964	98
Fig. B.1 - Critical production rate curves. (After Chaney et al., courtesy OGJ, May	
1956.)	99
Fig. B.2 - Critical production rate curves. (After Chaney et al., courtesy OGJ, May	
1956.)	.100
Fig. B.3 - Critical production rate curves. (After Chaney et al., courtesy OGJ, May	
1956.)	.101
Fig. B.4 - Critical production rate curves. (After Chaney et al., courtesy OGJ, May	
1956.)	.102
Fig. B.5 - Critical production rate curves. (After Chaney et al., courtesy OGJ, May	
1956.)	.103

Nomenclature

 $\begin{array}{lll} A & = Cross\ sectional\ area,\ ft^2 \\ A_T & = Total\ area\ of\ the\ field,\ ft^2 \\ A_W & = Drainage\ area\ of\ a\ well,\ ft^2 \\ c_f & = Formation\ compressibility,\ psi^{-1} \\ c_P & = Pore\ compressibility,\ psi^{-1} \\ h & = Formation\ thickness,\ ft \end{array}$

 h_{ab} = Oil column height above perforations, ft

 h_{bp} = Average oil column height below perforation, ft

 $\begin{array}{lll} h_{O} & = \mbox{Oil column thickness, ft} \\ h_{p} & = \mbox{Perforated interval length, ft} \\ h_{t} & = \mbox{Total formation thickness, ft} \\ h_{wb} & = \mbox{Water breakthrough height, ft} \\ i, i & = \mbox{Interest rate per year, fraction} \\ K & = \mbox{Absolute reservoir permeability, md} \end{array}$

 K_g = Effective gas permeability, md K_h , K_H = Horizontal oil reservoir permeability, md

 K_0 = Effective oil permeability, md

 K_{ro} = Oil relative permeability at (S_{wc}) , fraction

 $(K_{ro})_{Sgc}$ = Oil relative permeability at critical gas saturation, fraction $(K_{ro})_{Swc}$ = Oil relative permeability at connate water saturation, fraction

 K_{rw} = Water relative permeability at (1- S_{or}), fraction

 $(K_{rw})_{Sorw}$ = Water relative permeability at the residual oil saturation, fraction

 K_V = Vertical oil reservoir permeability, md

L = Wellbore penetration length from top of oil zone, ft

M = Water/Oil mobility ratio, fraction

 n_o , n_w , = Exponents on relative permeability curves, dimensionless

 n_p = Exponent of the capillary pressure curve for the oil-water system,

dimensionless

 N_P = Cumulative oil production, STB

P = Pressure, psi

 $(p_c)_{Swc}$ = Capillary pressure at connate water saturation, psi p_{cwo} = Capillary pressure of water-oil systems, psi

P_e = Reservoir pressure, psi

 P_{wf} = Bottom-hole flowing pressure, psi q_{c} = Critical coning rate, STB/day

q_c = Dimensionless critical coning rate, STB/day q_{CD} = Dimensionless critical flow rate, fraction

 Q_g = Gas flow rate, Mscf/day

 Q_{gc} = Critical gas flow rate, Mscf/day

Q_o = Oil flow rate, STB/day Q_{oc} = Critical oil rate, STB/day

 Q_{og} = Critical oil flow rate in gas-oil system, STB/day Q_{ow} = Critical oil flow rate in oil-water system, STB/day $Q_{SC,v}$ = Vertical well super-critical oil production rate, STB/day

 q_T = Total flow rate of the field, STB/day

 q_t = Total fluid production rate, STB/day

 Q_w , q_w = Water flow rate, STB/day r_1 = Radius of the cone, ft

 r_{De}, r_{eD} = Dimensionless drainage radius, ft r_{e} = External or drainage radius, ft

 r_w = Wellbore radius, ft

S^{*}_w = Effective water saturation, fraction

 S_k = Net cash flow considered to be spread throughout k years, dollars

 S_{nw} = Saturation of the nonwetting phase, fraction

 S_{or} = Residual oil saturation, fraction

 S_{orw} = Residual oil saturation in the water-oil system, fraction

 $S_{\rm w}$ = Water saturation, fraction

 S_{wc} = Connate water saturation, fraction

T = Reservoir temperature, ^oR

Z = Gas compressibility factor at P and T

 Δg = Water-oil static pressure gradient difference, psi/ft

 ΔN = Distance from the top of the formation to the top of perforated

interval, ft

 ΔZ = Gross perforated interval, ft

 $\Delta \gamma$ = Water-Oil gravity difference, psi/ft

 $\Delta \rho$ = $\rho_{\rm w} - \rho_{\rm o}$, density difference, lb/ft³ or gm/cc a" = Dimensionless transformed variable, fraction

 $\begin{array}{ll} \beta_g &= \text{Gas formation volume factor, bbl/SCF} \\ \beta_o &= \text{Oil formation volume factor, bbl/STB} \\ \beta_w &= \text{Water formation volume factor, bbl/STB} \\ \delta &= \text{Fraction of perforated interval, fraction} \\ \delta_g &= \text{Dimensionless gas cone ratio, fraction} \\ \delta_W &= \text{Dimensionless water cone ratio, fraction} \\ \epsilon &= \text{Dimensionless perforated length, fraction} \end{array}$

 λ = Fraction of oil column height above perforation, fraction

 μ_g = Gil viscosity, cp μ_o = Oil viscosity, cp μ_w = Water viscosity, cp

 $\begin{array}{ll} \rho_g & = Gas \ density, \ lb/ft^3 \ or \ gm/cc \\ \rho_o & = Oil \ density, \ lb/ft^3 \ or \ gm/cc \\ \rho_w & = Water \ density, \ lb/ft^3 \ or \ gm/cc \\ \psi_g & = Gas \ dimensionless \ function \\ \psi_w & = Water \ dimensionless \ function \end{array}$

 Φ = Porosity, fraction

Abbreviations

AFOC Annual Fixed Operating Cost

API American Petroleum Institute Standards

AQPERM Aquifer Permeability Modifier

AgRadius Aguifer Radius

BHFP Bottom Hole Flowing Pressure

DD Draw Down

FVF Formation Volume Factor

GOC Gas Oil Contact GOS Gulf of Suez

IRR Internal Rate of Return

KzMult Vertical Permeability Multiplier MMBtu Million British Thermal Unit

NPV Net Present Value OHC Oil Handling Cost

OP Oil Price

OWC Oil Water Contact Perf. Perforated Interval

PERMH Horizontal Permeability Modifier

PVT Pressure Volume Temperature Analysis

STB Stock Tank Barrel

STOIIP Stock Tank Oil Initially in Place
TVDss True Vertical Depth Subsea
VFP Vertical Flow Performance

WHC Water Handling Cost