Different controlled ovarian stimulation protocols and its effect on the oocyte quality and pregnancy outcome in "in-vitro " fertilization cycles

An Essay
Submitted For The Partial Fulfillment of
M.Sc. Obstetrics And Gynaecology
By
Reham Abd El Rahman Ahmed Issa
M.B.B.CH

Railway hospital

Supervised By

Dr.Ismail Fouad El Essaily

Professor of Obstetrics & GynaecologyCairo University

Dr.Magdy Ibrahim Mostafa

Assistant Professor of Obstetrics & Gynaecology
Cairo University

Dr.Hamsa Ahmed Maher

Lecturer of Obstetrics & GynaecologyCairo University

Cairo University
Faculty of Medicine
2007

ABSTRACT

The aim of this study was to evaluate the effectiveness of different controlled protocols of ovarian stimulation which were long, short and microdose protocols as GnRH agonist protocols and multiple dose protocol as a GnRH antagonist protocol in ICSI cycles as regard to the number of mature oocytes, number of embryos transferred, clinical pregnancy rate and cancellation rate.

Ovulation of the normal female is a complex process involving many organs. The hypothalamus pulsatile generator of reproduction, produce & secrete gonadotrophin releasing hormone which evokes the pituitary to release FSH &LH.In response to gonadotrophin stimulation, the ovaries initiate a dynamic process of steroidogenesis, which result in the formation of mature ovum ready to be fertilized. Any defect in this group of complex process results in failure of conceive or infertility which affects up to 14% of couples nowadays.

Key words: stimulation protocols - the oocyte quality - pregnancy outcome - "in-vitro" - fertilization cycles

<u>Acknowledgement</u>

I am really grateful to **ALLAH** for everything in my life, and then to my parents my real support. Thanks are not enough to express my gratitude to **Dr.Ismail Fouad El Essaily**, Professor of Obstetrics & Gynaecology for his attention, kind supervision & significant contribution all through the work. I am also grateful to Dr.Magdy Ibrahim, Professor of Obstetrics & Gynaecology and Dr.Hamsa Ahmed Maher, Lecturer of Obstetrics & Gynaecology for their sincere help.

AND AGAIN TO MY PARENTS

Contents

	Page
INTRODUCTION	1
AIM OF WORK	5
REVIEW OF THE LITERATURE	
The Menstrual cycle & Ovulation	8
A. Hypothalamus	
B. Pituitary	
C. The ovaries & ovulation	15
Preparation of infertile couple	27
A. Ethical considerations of ART	
B. Assisted reproduction techniques	29
C. Investigations of infertile couple	31
D. Complications of ART	
Ovulation Induction	
Indication of ovulation induction	46
Medical methods of induction	49
1-Antiestrogens	49
2- Gonadotropins	49
3- GnRH agonists	53
4-GnRH antagonists	60
Surgical methods of induction	61
Different protocols for ovulation induction	62
SUMMARY	75
CONCLUSIONS	
REFERENCE.	
ARARIC SUMMARY	

LIST OF ABBREVIATIONS

Abs: Antibodies

ACE: Angiotensin converting enzyme ACTH: adrenal corticotrophin hormone ART: Assisted reproduction technology

BBT: Basal body temperature

BMI: Body mass index CC: Clomiphene citrate

CCCT: Clomiphene citrate challenge test

OC_s: Oral Contraceptives

COH: Controlled ovarian hyperstimulation

CT: Computerized tomography

E2: Estradiol

E.E:Ethenyl estradiol

EP: Ectopic pregnancy

ET: Embryo transfer

FSH: Follicle stimulating hormone

GH: Growth hormone

GIFT: Gamete intrafallopin transfer

GnRH: Gonadotropin releasing hormone

GnRH-a: Gonadotrophin releasing hormone agonist

GRH: Growth hormone releasing hormone

HBV: Hepatitis B virus

HCG: Human chorionic gonadotrophin

HCV: Hepatitis C virus

HIV: Human immunodeficiency virus

HMG: Human menopausal gonadotrophins

HSG: Hysterosalpingography

ICSI: Intracytoplasmic sperm injection

IUI: Intrauterine insemination

IVF: In vitro fertilization LH: Luteinizing hormone

MBH: Mediobasal hypothalamus MRI: Magnetic resonance image

OHSS: Ovarian hyperstimulation syndrome

PCOS: Polycystic ovarian syndrome

PCT: Post coital test

PGD: Preimplantation genetic diagnosis

POF:Premature ovarian failure

TRH: Thyrotropin releasing hormone

TSH: Thyroid stimulating hormone

TVS: Transvaginal ultrasound

WHO: World Health Organization ZIFT: Zygote intrafallopian transfer

LIST OF FIGURES

NO	TITLE	PAGE	
1	Cyclic changes in blood levels of sex hormones & their	8	
_	biological effects		
2	The interaction between the hypothalamus, pituitary &	14	
2	target organs		
2	The two-cell-two gonadotropin theory of follicular	21	
3	development	Δ1	
4	Amino acids in native GnRH	55	
5	COH with HMG after pretreatment with GnRH-a	71	

LIST OF TABLES

NO	TITLES	PAGE
	Important findings for therapy of	
1	patients with ovulatory &cyclic	45
	disorders	
2	Agonistic GnRH analogues	57

J-NJ-RODUCTION

INTRODUCTION

Infertility affects up to one in seven couples all over the world (*Royal College of Obstetricians and Gynecologists*, 2000). A proportion of these couples may be able to ultimately conceive, but for the majority conception is unlikely without some form of medical intervention (*Collin*, 2001). In vitro fertilization and, more recently, ICSI are now commonly used treatment for infertility attributable to tubal factor, significant endometriosis and male factor and also used to treat persistent unexplained infertility (*Lloyd et al.*, 2003).

Before describing strategies, an understanding of the usual controlled ovarian hyperstimulation (COH) protocol is needed for comparison. The protocol involves two steps:

- 1) Down-regulation of anterior pituitary gland by GnRH agonists.
- 2) Controlled ovarian hyperstimulation with gonadotropins.

(Pinkas et al., 2000)

The purpose of down-regulation is to temporarily take away the ability of anterior pituitary gland to release the LH surge. When GnRH-a is administrated, it will initially cause an increase in FSH and LH levels followed by suppression or down-regulation in FSH and LH levels. The suppression of endogenous FSH levels means more exogenous FSH must be administrated to achieve a given level of ovarian stimulation. The advantage of GnRH-a and gonadotrophins is that they reduce the necessity to cancel the cycles (*Moghissi*, 2000).

Different GnRH-a regimens have been used but a major distinction is based on the duration of use before the invitation of gonadotrophin therapy. The short or flare regimen is begun during the follicular phase of the treatment cycle, 1 or 2 days before gonadotrophin administration while long down regulation regimen is begun either during the luteal phase of the cycle before treatment or during the follicular phase at the treatment cycle and is continued for at least 10 days before gonadotrophin administration (*Cramer et al.*, 1999).

Other investigators who observed that follicular phase flare protocols (microdose protocols) produce clinical results similar to luteal phase protocol (*Leondires et al.*, 1999).

In support of these drugs, patients classified as "poor-responders" were reported to have lower cancellation rates, improved cycle quality and pregnancy after using microdose GnRH-a protocol (*Surrey & Schoolcraft*, 2000).

So it has been established that GnRH-a themselves may contribute to low ovarian response. Pituitary over suppression induced by GnRH-a causes an increase in the gonadotrophin requirement for ovarian stimulation and a reduction in the number of oocytes retrieved and fertilized. Pituitary oversuppression could occur after excessive or prolonged doses of GnRH-a administrated according to the long luteal protocol. With the aim of reducing the intensity of pituitary suppression, several schemes have been proposed with lower analogue doses or even interrupting their administration (*Depalo et al.*, 2001).

The GnRH antagonists were introduced in recent years as a new alternative for COH cycles in IVF-ET. Either in the form of multiple dose protocol or single dose protocol (*Escudero et al.*, 2004).

GnRH antagonists competitively block pituitary gland receptors, including a rapid, reversible suppression of gonadotrophin secretion. Due to their pharmacological mode of action, GnRH antagonists can be administrated at mid-cycle to prevent a premature LH surge while not causing any suppression in the early follicular phase, which is a crucial time for follicular recruitment. This

is particularly important in those patients who have decreased ovarian reserve. *Nikolettos et al.*, (2001) postulate that the use of antagonist protocol in poor responders may improve the ovarian responsiveness to gonadotrophin stimulation compared with the conventional long GnRH agonist regiment.

As physicians gained greater experience and comfort with GnRH-antagonists regimens, compatible outcomes in pregnancy and implantation rates were achieved (*Williams et al.*, 2002).

AIM OF THE WORK

AIM OF THE WORK

The aim of this work to evaluate effectiveness of different controlled ovarian stimulation protocols (GnRH-agonist protocols and GnRH-antagonist protocols) in ICSI cycles as regard to the oocyte number and quality, embryo number and quality and clinical pregnancy rate.

Review of Literature