Surgical management of spinal meningioma

Thesis

Submitted for Partial Fulfillment of The Master degree (M.Sc.) in Neurosurgery

By

Mahmoud Ramadan Adly Ali

(M.B., B.Ch.)

Faculty of Medicine, benisuef University

Supervised By

Prof. Dr. Sameh Ahmed Sakr

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. Mohamed Ahmed EL Beltagy

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Dr. Mohamed Ahmed Hewedy

Lecturer of Neurosurgery, Faculty of Medicine, Benisuef University

Faculty of Medicine
Cairo University
2016

التدخل الجراحى لعلاج الاورام السحائية بالحبل الشوكى

رسالة مقدمة من

الطبيب/ محمود رمضان عدلى على

بكالوريوس الطب والجراحة كلية طب بنى سويف

توطئة للحصول على درجة الماجستير

فی

جراحة المخ والأعصاب

تحت إشراف

أ.د. سامح أحمد صقر

أستاذ جراحة المخ والأعصاب

كلية الطب – جامعة القاهرة

أ.د. محمد أحمد البلتاجي

أستاذ جراحة المخ والأعصاب

كلية الطب – جامعة القاهرة

د. محمد أحمد هويدى

مدرس جراحة المخ والأعصاب

كلية الطب - جامعة بني سويف

كلية الطب

جامعة القاهرة

2016

Contents

Contents Page

Acknowledgment	II	
Abstract	III	
List of figures	iV	
List of tables	Vii	
List of abbreviations	Viii	
Introduction	1	
Aim of work	3	
Review of literature	4	
Epidemiology	4	
Anatomy	6	
Pathology	26	
Clinical picture	36	
Investigations	44	
Differential diagnosis	52	
Treatment	61	
Patients and method	80	
Results	83	
Case presentation	94	
Discussion	107	
Conclusion	110	
Summary	111	
References	113	
Arabic Summary	121	

Acknowledgment

First of all, my deepest thanks go to God, for giving me the patience, power, and health to finish this work.

I am greatly honored to express my thanks and gratitude to **Prof. Dr. Sameh Ahmed Sakr**, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for guidance great help encouragement and his creative support throughout the whole work up of this essay and for his valuable supervision of this thesis.

I am greatly honored to express my deepest thanks, gratitude and respect to my mentor **Prof Dr. Mohamed Ahmed ELBeltagy**, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his guidance, supervision, and continuous advice throughout this work.

I am deeply thankful to **Dr. Mohamed Ahmed Hewedy**, Lecturer of Neurosurgery, Faculty of Medicine, Benisuef University. for his extreme care, great effort and faithful supervision not only during this work but ever since I started my residency.

I am greatly honored to learn from their experience and wise counsel, and thankful for their for giving me some of their precious time.

Special thanks to my father, my mother, my wife and all my family for their support and great help for completing this work.

In conclusion, I wish to thank all my professors and colleagues for their help and co-operation.

Abstract

Spinal meningiomas are the second common spinal tumor, they account for 25 -46% of primary spinal cord tumors, It is proved that early surgical intervention is the best management for spinal meningioma.

The current prospective study was carried in Cairo university hospitals on 15 patients suffering from spinal meningioma which were diagnosed by clinical suspicion and radiological investigations, These cases were operated upon by surgical excision through posterior approach and the outcome of these cases and factors affecting the outcome are observed.

In our study we have concluded that early diagnosis and early surgical intervention have better results as delay can lead to permanent neurological deficit. Postoperatively, remarkable improvements in neurological deficits were achieved, however risk factor as age, severe preoperative neurological deficit also if the tumor is ventral to the cord and calcified, surgery becomes challenged, have been considered as predicators of a poor surgical outcome, Also 3 predictor variables for recurrence were invasion of the arachnoid/pia, Simpson resection grade and histological tumor grade.

Key words:

Neurosurgery - spinal cord - spinal meningioma - Outcome - Surgical intervention .

List of figures

List of figures	Page
Figure 1: First cervical vertebra or atlas	6
Figure 2: Second cervical vertebra, from above	7
Figure 3: A cervical vertebra	7
Figure 4: Side view of a typical cervical vertebra	8
Figure 5: A thoracic vertebra	9
Figure 6: A lumbar vertebra from above and behind	10
Figure 7: the spinal cord coverings	11
Figure 8: ligaments of the spinal canal	18
Figure 9: Arterial supply of the spinal cord	20
Figure 10: Blood supply of the spinal cord	
(A) Arterial supply of the spinal cord.	22
(B) Venous drainage of the spinal cord.	23
Figure 11: Cross section in spinal cord	25
Figure 12: Microscopic picture for Meningothelial meningioma	28
Figure 13: H and E stain for a psammomatous meningioma.	29
Figure 14: H and E stain for a fibroblastic meningioma .	29
Figure 15: H and E stain for a transitional meningioma.	30
Figure 16: Microscopic pictures for WHO grade II meningiomas: (A) Atypical meningioma with increased mitotic activity (B) clear-cell meningioma with clear. (C) chordoid meningioma.	31 y
Figure 17: Microscopic pictures for WHO grade III meningiomas: (A) Anaplastic meningioma (B) rhabdoid meningioma (C) papillary meningioma	23
Figure 18: Sagittal T2W MRI for typical dorsal meningioma. Figure 19: Sagittal T2W MRI for typical cervical meningioma. Figure 20: Sagittal T2W MRI for Lumbosacral meningioma. Figure 21: CT dorsal spine for intradural Ossified meningioma. (A) sagittal section (B) axial section	33 34 35 44

_	5 6 7 7	16
	(A) T1W: homogenous lesion slightly lower intense than the cord	l.
	(B) T2W: slightly hyper intense than that of the cord	
((C) with contrast : homogenous enhanced lesion .	
_	5 5 5 5 5	46
Figure 24:	Sagittal T1W MRI for dorsal meningioma:	47
	(A) without contrast: isointense meningioma	
	(B) with contrast : homogenously enhances.	
	(C) Axial : displacement of the cord to the left .	
Figure 25:	MRI for extradural cervical meningioma :	47
	(A) Sagittal T1W: isointense mass behind the odontoid.	
	(B) Sagittal T2W: hypo intense than the cord.	
	(C) sagittal T1W with contrast : homogeneously enhanced lesion	۱.
Figure 26:	T1W MRI for recurrent en plaque dorsal meningioma	49
	(A) Sagittal with contrast	
	(B) axial with contrast	
Figure 27:	MRI for dorsal Neurofibroma	53
Figure 28:	images for a recurrent dumbbell cervical schwannoma	54
	(A) Oblique X-ray of the cervical spine	
	(B) coronal T1W MRI with contrast: enhanced schwannoma	
	(C) CT demonstrates bony erosion on the right side	
Figure 29:	MRI for Lumbar Schwannoma below conus	54
	(A) Sagittal T1W: isointense to cord.	
	(B) Sagittal T2W: slightly hyper intense to cord.	
	(C) axial T2W MRI.	
Figure 30:	Sagittal MRI for Myxopapillary ependymoma	55
Figure 31:	T2W image MRI for "dermoid cyst"	56
Figure 32:	MRI for arachiniod cyst	57
	(a) T1W image: hypointense arachiniod cyst	
	(b) T2W image: isointense arachiniod cyst	
Figure 33:	MRI for the lumbar spine leptomeningeal disease.	59
Figure 34:	Sagittal T2W MRI for lumbar Epidural Granuloma .	60
Figure 35:	Sagittal T2,T1 and axial T1 MRI with contrast for a dorsal	
	meningioma.	74

Accompanying intraoperative photograph for the tumor	
Figure 36: Intraoperative photo for dorsal meningioma.	75
Figure 37: (Chart): Level of the tumor	83
Figure 38: (Chart) Tumor incidence by age group	84
Figure 39: (Chart): distribution by sex	85
Figure 40: (Chart) Clinical Symptoms and signs on initial examination	87
Figure 41: (Chart) Extent of surgical resection	88
Figure 42: (Chart) Clinical results	93
Figure 43: Postoperative complications	93
Figure 44: preoperative MRI and CT for dorsal meningioma	
(A)T1-weighted sagittal MRI with contrast.	96
(B) T1-weighted sagittal MRI without contrast.	96
(C) T2-weighted sagittal MRI.	97
(D)T2-weighted axial MR image.	97
(E) T1-weighted axial MR image with contrast	98
Figure 45: Intra-operative findings of spinal meningioma excision.	98
Figure 46: Post-operative MRI showing mass removal at D11-D12 level.	
(A) Post-operative T2W MRI.	99
(B) Post-operative sagittal T1W MRI.	99
(C) Post-operative sagittal T1W MRI with contrast	100
(D) Post-operative axial T1W with and without contrast.	100
Figure 47: Pre-operative cervicodorsal MRI dorsal meningioma at D1,2,3.	
(A) sagittal T1W with contrast	103
(B) sagittal T1W without contrast	103
(C) sagittal T1W without contrast	104
(D) Axial T2W image with contrast.	104
Figure 48: postoperative cervicodorsal MRI	
(A) T1W and T2W sagittal without contrast cervicodorsal MRI.	105
(B) T1 and T2 sagittal with contrast cervicodorsal MRI.	105
(C) T2W Axial with contrast after excision of the tumor.	106

List of Tables

		Page
Table 1	British Medical Research Council (MRC) grading system	43
Table 2	The Simpson grade of meningioma resection	70
Table 3	Level of the tumor	83
Table 4	Tumor incidence by age group	84
Table 5	distribution by sex	85
Table 6	Clinical symptoms in relation to location of the tumor	86
Table 7	Clinical symptoms and signs on initial examination	87
Table 8	Extent of surgical resection	88
Table 9	British Medical Research Council (MRC) grading system	89
Table 10	Functional outcome of motor power using British	91
	Medical Research Council (MRC) grading system	
Table 11	Clinical results postoperative	92
Table 12	Pathological classification	92
Table 13	Postoperative complications	93

List of abbreviations

CT	Computed tomography
EMG	Electromyography
Gd	Gadolinium contrast
H and E	Hematoxylin and eosin stain
LL	lower limb
MEP	Motor-evoked potentials
MRI	Magnetic resonance imaging
SSEP	Somatosensory-evoked potentials
UL	upper limb
WHO	World Health Organization

Introduction

Spinal meningiomas are the second common spinal tumor, they account for 25 - 46% of primary spinal cord tumors they represent 7.5 - 12.7% of all meningiomas of the body, they are slowly growing, well circumscribed tumors, mostly benign in nature, arising from the arachnoid "cap" cells of the arachnoid villi in the meninges. (23)

Commonly arise between the fifth and seventh decades of life, more frequently in females, 75 - 85 % of them arise in women, most frequently present in dorsal spine followed by cervical then lumbosacral spine. (5)

The first reported successful resection of a spinal meningioma was in 1888 by Sir Victor Horsely and Sir William Gowers. While they initially described their spinal tumor as a fibromyxoma, the term "meningioma" that is now universally employed was introduced by Harvey Cushing. Cushing and Eisenhardt defined removal of a spinal meningioma as "one the most gratifying of all operative procedures" With modern imaging, the delay in the diagnosis of spinal meningiomas has been significantly shortened. (10)

Tumor location is one of the most important factors affecting the clinical outcome. Spinal meningiomas are usually localized lateral to the spinal cord, but 15 - 27% of cases are located anteriorly and constitute a surgical challenge. (28)

As the majority of spinal meningiomas are benign, well circumscribed, surgery is the treatment of choice; offers the potential for "cure" without the need for further treatment, however risk factor as age, severe preoperative neurological deficit also if the tumor is ventral to the cord and calcified,

surgery becomes hazardous and may damage the cord have been considered as predicators of a poor surgical outcome. $^{(10)}$

Aim of the work

The aim of this study to review the literature about the spinal meningiomas, their incidence, clinical picture, the best management, and reveal the factors affecting surgical outcome.

EPIDEMIOLOGY

Meningiomas represent the second common spinal tumors; represent 25 - 46% of all primary intraspinal tumors, most of them are intradural, the fraction of entirely extradural meningiomas range from 3 - 9%. (72)

The relative ratio of meningiomas to nerve sheath tumors, however, varies by population. While the incidence of meningiomas and nerve sheath tumors is about equal in the Western population, in Asian populations, schwannomas are more common and have been reported with ratios of almost 3.8 - 1 in China and 3.9 - 1 in Japan. (30)

There is a female predominance, with spinal meningiomas 75 - 85% of meningiomas arise in women. This female predominance has been postulated to be due to sex hormones or the existence of various other receptor types (steroid, peptidergic, growth factor and aminergic) that may contribute to tumor formation. (7)

Spinal meningiomas can be found in any age group, but they most frequently present between the fifth and seventh decades of life. (57)

Their distribution within the spinal axis varies, with the majority located within the dorsal spine; 76 - 84% of spinal meningiomas are found in the dorsal region. (16)

In the cervical region, the incidence of spinal meningiomas is 14 -27%. While meningiomas are the most common benign tumor found at the foramen magnum, low cervical meningioma are rare. The majority of these are located in the high cervical region. The incidence in the lumbar spine is 2 - 14%,