

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.880

Cairo University
Faculty of Veterinary Medicine
Department of Theriogenology

169

Cytogenetic Studies on in - Vitro Fertilization in Buffaloes

A thesis presented

By

Karima Ghonaimy Mohamed Mahmoud

(B.V.Sc, Zagazig University, Benha, 1991) (M.V.Sc, Theriogenology, Cairo University, 1997)

For
The Doctor of Philosophy Degree in Theriogenology

Under supervision of

Prof. Dr. Adel.A.M.Seida

Professor of Theriogenology Faculty of Veterinary Medicine Cairo university.

rof. Dr.Samir M.A.Nawar

rof.of Cytology & Histology Faculty of Veterinary Medicine Cairo University

Prof.Dr Mahmoud F.Nawito

Professor of Animal Reproduction &A.I. National Research Center

2001

Cairo University Faculty of Veterinary Medicine Department of Theriogenology

169

Approval Sheet

This to certify that, the thesis presented by Karima Ghonamy Mohamed Mahmoud to Cairo University for Ph.D.

Degree (Theriogenology) has been approved by:

ay Ms

Prof.Dr. A.I. El Azab

Prof. And Head of Department of Theriogenology Faculty of Veterinary Medicine, Moshtoher Zagazig University "Benha branch"

Prof.Dr. A. G. Hassan

Prof. of Theriogenology .
Faculty of Veterinary Medicine —
Cairo University, Beni Suef branch .

A-A Seldan

Prof. Dr. A.A. Seida

Prof. of Theriogenology Faculty of Veterinary Medicine Cairo University "Supervisor of the Thesis"

Prof. Dr. S. M. A. Nawar.

Prof. of Cytology and Histology Faculty of Veterinary Medicine Cairlo University "Supervisor of the Thesis"

J. M.

Acknowledgement

Acknowledgement

First and foremost, my deep gratefulness and indebtedness is to ALLAH.

I would like to express my deepest gratitude to **Prof. Dr. A.A. Seida**, professor of Theriogenology Faculty of veterinary medicine, Cairo university, for his supervision, continuous help, valuable advice and encouragement during the entire course of study.

My cardial faithful thanks and great indebtedness to **Prof. Dr. S.M.A. Nawar**, professor of Cytology and Histology, faculty of veterinary medicine, Cairo university, for his kind supervision and cooperation during the entire course of study.

My very special thanks and sincere gratitude to **Prof. Dr. M.F. Nawito,** professor of Animal reproduction and A.I..
National Research Center, for his effective supervision. no words can satisfy and explain my deep feeling of gratitude for his valuable suggestions and aid throughout the entire period of this research.

Special thanks to **Dr. Abdel–Mohsen M. Hamam**, Assistant professor of Animal Reproduction and A.I., National Research Center, for his valuable help during the in-vitro fertilization work.

I wish to thank sincerely **Dr.** Khaled H. Mohamed, faculty of veterinary medicine, Cairo university and **Dr.** Tarek A. Scholkamy, Animal Reproduction Research Institute for their friendship and their cooperation during the course of this experiment.

My thanks for all staff members of department of animal reproduction and A.I, National Research Center for their kind helpful support to my work.

Finally, I am gratefully to all of my family members especially my parents for providing unfailing support throughout the years.

Contents

CONTENTS

1- Introd	duction
	w of Literature
1- Co	llection of oocytes
2- Sel	ection of oocytes.
3- Oo	cytes maturation and media supplements
4- C	apacitation and sperm preparation for in vitro
fe	rtilization (IVF)
5- Co	-culture of eggs and spermatozoa.
6- In	vitro development of embryos (IVD)
7- Em	bryo evaluation.
8- Cy	togenetical studies.
8	.1 Chromosomes of buffaloes
8	.2 Meiosis in female
. 8	.3 Chromosome abnormalities in oocytes
8	.4 Chromosome abnormalities in unfertilized oocytes
8	.5 Chromosome abnormalities in embryos.
3- Mate	rials and Methods
A- Ma	terials
:	I- Biologicals
2	2- Chemicals
•	3- Equipments
B- Mo	ethods
1	- Collection of ovaries
2	- Oocytes recovery and selection.

3- Oocytes maturation.		
4- Chromosome preparation of in-vitro matured oocytes.	•	
5- Sperm preparation.		
6- Insemination in vitro .		
7- In vitro embryo culture and development.		
8-Chromosome preparation of in-vitro unfertilized oocytes		
9- Chromosome preparation of in-vitro produced embryos		
10- Data and statistical analysis.		
4 – Results	62	
1- Oocytes recovery and selection.		
2- Cytogenetic analysis of in-vitro matured buffalo		
oocytes.		
3-Cytogenetic analysis of unfertilized buffalo oocytes.		
4- Cytogenetic analysis of early stage buffalo embryos produced in vitro.		
5- Discussion	97	
6- Summary	114	
7- References	120	ż
8- Arabic Summary		

i I

Introduction

Introduction

Buffaloes are multipurpose animals providing milk and meat. However, there is a wide gap between demand and supply of milk and meat. Massive numbers of buffaloes are taken from their breeding and sent to the slaughterhouses just after completion of their lactation leading to direct loss of valuable germplasm. Recent advances in embryo biotechnology have made it possible to recycle their germplasm to a certain extent through the technique of in vitro fertilization (IVF), where follicular oocytes from the ovaries of slaughterhouse can be retrieved, matured and fertilized in vitro with capacitated sperm. These embryos can be further transferred into the recipient animals.

The use of in vitro techniques has become a routine procedure in many laboratories for research purposes and even for large-scale production of embryos from ovaries of slaughtered animals of high genetic performance for use in commercial animal breeding. These embryos are also in demand for use in biotechnology such as transonic animal production, cloning, preimplantation diagnosis of embryos (sexing). They are also used for detection of genetic disease in oocytes or embryos before implantation occurs (*Greve*, *Madison, Avery, Callesen and Hyttel*, 1993). Moreover the