Role of advanced MRI techniques in predicting and evaluating the response of breast cancer to neoadjuvant chemotherapy

Essay

Submitted for partial fulfillment of master degree in Radiosiagnosis

by

Mouna Abdulaziz A elkhoja

M.B.B. Ch. – faculty of Medicine, Tripoli University

Under supervision of

Prof. Dr. Dalia Zaki Zidan

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Nermeen Nasry Halim

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Dalia Zaki Zidan**, Professor of Radiodiagnosis Faculty of Medicine Ain Shams University, for his meticulous supervision, kind guidance, Valuable instructions and generous help.

Special thanks are due *Dr. Nermeen Nasry Halim*, Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University for her sincere efforts and fruitful encouragement.

Also I would like to thank my **Family** and who stood behind me to finish this work and for their great support.

Mouna Abdulaziz A elkhoja

List of Contents

Title	Page No.
List of Contents	i
List of Tables	ii
List of Figures	iii
Introduction	1 -
Aim of work	4 -
Review of Literature	
Anatomy of the breast and mri appe	earance <i>5 -</i>
PATHOLOGY of breast cancer	16 -
Principles of Mri of the Breast	34 -
Interpretation of Mri_Breast Lesions	S 40 -
Role Of Advanced MRI techniques i and evaluation of neoadjuvant cl Effect on breast cancer	nemotherapy
Summary	115 -
References	118 -
Arabic summary	······

Tist of Tables

Table No.	Title	Page No.
Table (1):	Histologic classification of breast cancer	
Table (2):	TNM Stage Grouping for Breas Cancer.	
Table (3):	is an example of an MRI breast imaging protocol performed at the Memorial Sloan-Kettering Cancer Center.	e r
Table (4):	Breast MRI Terms Proposed by the International Working Group of the American College of Radiology	
Table (5):	Change of enhanced parameters of 44 lesions during NAC	

List of Figures

Fig. No. Title Page No.
Figure (1):Schematic of sagittal views of the breast 5 -
Figure (2):Nipples on MRI may (A) enhance intensely, (B)
mildly, or (C) not at all, depending on blood supply 6
Figure (3): Medial breast with pectoralis major muscle (arrow)
overlying ribs (curved arrow) and intercostal muscles
(thick arrow)7
Figure (4): Laterally in the breast the pectoralis minor is
visualized (arrow) behind the pectoralis major muscle 7 -
Figure (5): Pectoralis major muscle (arrow) and pectoralis minor
muscle (curved arrow). Axillary artery identified
(thick arrow)8
Figure (6): Glandular breast tissue 9 -
Figure (7): Blood supply of the breast 10 -
Figure (8): Lateral thoracic artery (arrow) and branches 10 -
Figure (9):Internal mammary artery (arrow) anterior to the heart 11 -
Figure (10): Lymphatic drainage of the breast 13 -
Figure (11): Multiple normal appearing level I axillary lymph
nodes posterior to pectoralis major muscle 13 -
Figure (12): Lymph node in the posterior medial breast. Presence
of vessel extending to hilum and characteristic
reniform appearance allows diagnosis 14
Figure (13): Benign lymph node with vessel radiating to hilum 14 -
Figure (14): Nerve supply of the breast 15 -
Figure (15): Intraductal carcinoma, comedo type. Distended duct
with intact basement membrane and central tumor
necrosis 20
Figure (16): Well-differentiated ductal carcinoma in situ with a
cribriform pattern of growth 20 -
Figure (17): Lobular intraepithelial neoplasia 22 -
Figure (18): Invasive ductal carcinoma 24 -
Figure (19): Invasive lobular carcinoma 25 -
Figure (20): Mucinous carcinoma, hypocellular variant 26 -

Fig. No.	Title	Page No.
Figure (21):	T1 is further divided into 4 groups	30 -
	T2 – The tumour is more than 2 centir	
1	more than 5 centimetres across. (2-5 cm)) 30 -
	T3 – The tumour is bigger than 5 centim	
Figure (24):	(a- d) The same section is displayed the	hroughout the
(dynamic series, from 69 seconds after	injection (a)
1	through the fourth scan obtained 4	minutes 36
5	seconds after injection (d). Note that cor	ntrast between
(cancer (arrow) and normal fibrogla	ndular tissue
((arrowheads) on both sides is best on a,	very early in
]	postcontrast phase. Owing to strong was	shout effect of
1	the cancer and progressive signal intensi	ty increase of
	normal parenchyma, the cancer m	=
	overlooked on d	
•	: A postcontrast sagittal image de	
	multilobulated IDC in the lower poster	•
	the breast	
	Algorithm for interpretation	
	Multiple foci of enhancement (arrow	· •
	right breast. All foci were stable for at l	•
	and were considered benign	
	Mass shape may be defined as round, or	
	or irregular.	
	The image on the left is a juvenile fibre	
	is oval in shape and has smooth margins	• • •
	benign. The non-enhancing septations a this case	
	Lobulated mass lesion-Lobular invasive	
• , ,	: Large, round mass with smooth ma	
• , ,	turned out to be an epidermal inclusion of	•
	Oval smooth lymph node	•
-	Small round smooth carcinoma	
- 18010 (00)		17

Fig. No.	Title	Page No.
Figure (34)	Sagittal 3D FSPGR image with fat suppressing malignant mass with spiculated margins	
Figure (35)	: Fat-containing hamartoma with high signa (arrow)	
Figure (36)	: Two examples of a hamartoma with dark a	
,	on a fat suppressed T1WI with Gd	
Figure (37)	Examples of cysts	
Figure (38)	: Fibroadenoma (left) and a colloid carcino	ma (right).
	Both are bright on T2WI	49 -
Figure (39)	: Homogeneous enhancement	51 -
Figure (40)): Invasive lobular carcinoma with he	terogenous
	enhancement	51 -
Figure (41): Invasive ductal carcinoma with rim en	hancement
	invading the surrounding tissue	52 -
Figure (42)	: Inflammatory cysts	52 -
Figure (43)	:Fat necrosis following surgery	52 -
Figure (44)	: Phylloides tumour	53 -
Figure (45)	: Enhancing internal septations	53 -
Figure (46	5): Central enhanced nidus (arrows) and	enhanced
	internal septum (arrowhead). Pathologic	assessment
	revealed invasive high-grade ductal carcino	ma 54 -
Figure (47)	: Kinetic curve assessment	55 -
Figure (48)	: The CAD shows a large area of red superi	-
	the breast lesion .In CAD, red is bad: it me	
	washout, and probably cancer	58 -
Figure (49)	: A large, abnormally enhancing area in the	
	The CAD has detected some very small	
	type 3 washout (in red). This was a large	ge invasive
	ductal carcinoma.	
Figure (50)	: Focal DCIS	60 -
Figure (51)	: Ductal enhancement in DCIS	60 -

Tia Mo	Title	Dago Mo
Fig. No.	Title	Page No

Figure (52): A mass as well as areas of linear non-mass
enhancement (ductal) This proved to be linear DCIS
with an invasive ductal carcinoma 60 -
Figure (53): Linear enhancement in scars following surgery 61 -
Figure (54): MIP demonstrating linear enhancement in scar
(arrow) 61 -
Figure (55): Segmental enhancement 61 -
Figure (56):Regional enhancement in a case of DCIS 62 -
Figure (57): Diffuse enhancement (A) Initial study in the third
week of the menstrual cycle in a premenopausal
woman. (B) Follow up several months later in the
second week of the cycle demonstrates much less
parenchymal enhancement 62 -
Figure (58): Punctate enhancement in a hamartoma with
fibrocystic change (arrows) 63 -
Figure (59): Nonmasslike enhancements 64 -
Figure (60): Nipple invasion.Subareolar invasive ductal
carcinoma 65 -
Figure (61): Diffuse skin thickening with enhancement.
Inflammatory breast carcinoma. Note reticular
dendritic pattern of enhancement in the breast 66 -
Figure (62): Locally advanced breast carcinoma with axillary
adenopathy 66 -
Figure (63): Hematoma: Image demonstrates high signal intensity
of postoperative hematoma following surgery with
thin rim of enhancement around hematoma cavity
representing immediate postoperative changes 67 -
Figure (64): Abnormal signal void from a metallic clip placed
during stereotactic biopsy. Note residual clumped
enhancement around the clip indicating residual
DCIS 67 -

Fig. No.	Title	Page No.

Figure (65): Chest wall invasion. Note dominant carcinoma in
lower breast. Posterior satellite lesion invades
intercostal muscle
Figure (66):A 58-year-old woman with locally advanced breast
carcinoma had MRIprior to chemotherapy. Note that
the retroareolar mass invades the nipple and
surrounding skin. Extensive involvement of the breast
is also noted. On physical examination, she had
thickened skin anteriorly with peaud'orange 69 -
Figure (67):A 43-year-old woman demonstrates extensive areas of
abnormal enhancement suspicious for locally
advanced breast carcinoma 69 -
Figure (68): Signal intensity-time curve 73 -
Figure (69): Pixel-by-pixel colour maps with each pixel
representing values for K trans 76 -
Figure (70): Images obtained from a 64-year-old Woman with Invasive
Ductal Carcinoma Who Obtained Pathologic Complete
Response after Chemotherapy 81 -
Figure (71): Images Obtained From a 45-Year-Old Woman With
Invasive Ductal Carcinoma Who Was Included in
Non-Pathologic Complete Response Group 82 -
Figure (72): Change of SI-Time curve before and after 1st cycle
of NAC in responders 84 -
Figure (73): Change of SI-Time curve before and after 1st cycle
of NAC in non-responders 84 -
Figure (74): MRI scan picture of breast cancer (arrow) 86 -
Figure (75): MRI scan picture of breast cancer (arrow) 87 -
Figure (76): Single voxel spectra from healthy breast tissue 92 -
Figure (77): Different pathological tissue types have different
MRS characteristics 92 -
Figure (78): Example of a localized breast spectrum acquired at 4
T 94 -

(Fig. (No.	Sitle Page M	0-•
Figure (79)	: Mammographically detected, biopsy-proved invasive	<u> </u>
	ductal carcinoma (true positive finding) of the left	t
	breast in a 52-year-old woman	- 95 -
Figure (80	: Dynamic magnetic resonance imaging (MRI) and	l
	proton magnetic resonance spectroscopy (1H-MRS))
	of the breast	- 95 -
Figure (81)	: verage spectra (spectral regions; 2.90-3.65 and 3.75-	-
	4.7ppm) of samples from patients with a) PR ($n=11$	-
	pre/11 post) and b) SD (n=19 pre/14 post), pre- (left))
	and post- (right) treatment	
Figure (82	: Monitoring of Neoadjuvant Chemotherapy by MR	
	Spectroscopy	
Figure (83)	: Maximum intensity projection MR images (left) and	
	corresponding MR spectra (right) from 40-year-old	
	patient who achieved pCR.(A) Before treatment, 3.4-	
	cm lesion (arrow) shows heterogeneous enhancing	
	pattern	
Figure (84	: Maximum intensity projection MR images of 29-	
	year-old woman (patient 24) who had	
F' (0.5)	residualinvasive cancer after completing NAC	
Figure (85)	: ADC map. Note the posterior cyst with hyperintense	
	signal (open arrow) and an anterior breast carcinoma	
E: (0.6	with low signal (solid arrow) (Brandao et al., 2013)	
Figure (86)	: Breast cancer on DWI & Corresponding ADC map,	
Eigung (97)	appearing as a dark signal	
	: DWI interpretation strategies	
riguie (88)	: Graph illustrates the correlation between exp (-b · D)	
	and b value at various diffusion coefficients	109 -

Figure (89): Ductal carcinoma in situ (DCIS) in the left breast. ... - 111 -

Introduction

Worldwide, breast cancer is the most frequently diagnosed life-threatening cancer in women and the leading cause of cancer death among women (*Swart*, 2010).

In Egypt, breast cancer is the most common cancer among women, representing 18.9% of total cancer cases (35.1% in women and 2.2% in men)(*Omar et al.*, 2003).

Although its incidence continues to rise, mortality has declined over the past several years. The decline has been attributed to both early diagnosis and more effective treatment (*Jean et al.*, 2009).

Diagnostic imaging can make the largest contributions towards improving the management and outcome of women with breast cancer by new effective methods of following therapy and establishing prognosis (*Powe 1997, Hoh et al., 1993*).

This is especially important in locally advanced breast cancer which remains a challenging clinical problem (*Whitman and Strom*, 2009).

Neoadjuvant chemotherapy (NAC) followed by surgery was introduced about 2 decades ago to treat patients with locally advanced breast cancer, which represents approximately 20% of all women who receive a diagnosis of breast cancer (*Jean-Paul et al.*, 2003).

While neoadjuvant chemotherapy achieves the same survival rates as postoperative chemotherapy in women with operable breast carcinoma, the advantages of neoadjuvant treatment over conventional adjuvant chemotherapy are manifold (*Rosen et al.*, 2003 Yeh et al., 2005).

First, and most importantly, chemotherapy given before surgery may shrink the large tumors to improve the resectability in some (inoperable to operable) and to allow for breast conservation surgery in others (fewer mastectomies) (Rosen et al., 2003 Yeh et al., 2005).

Second, it allows for assessment of tumor response in each patient (Rosen et al., 2003 Yeh et al., 2005).

NAC gives high clinical response rates (70-98%) and can even achieve pathological complete response (PCR) in a subgroup of patients (3-34%). The prediction of PCR from the early response can contribute to a timely adjustment of treatment protocol to help reach this goal, and to avoid unnecessary toxicity of ineffective treatments. While on the other hand it permits early detection of resistant tumors to choose alternative and possibly more efficacious treatments, such as other types of chemotherapy or early surgery(Mei-Lin et al., 2008 Hyeon-Man et al., 2009).

Third, the upfront nature of this treatment provides the earliest chance to treat micro-metastatic disease and saves time, unlike conventional adjuvant chemotherapy that may be delayed for several months because of surgical scheduling and the need for wound healing (*Rosen et al.*, 2003 Yeh et al., 2005).

Lastly, the intact neo-vasculature can be exploited to the advantage of the patient. Because surgical excision may alter the tumor's vasculature, neoadjuvant chemotherapy may have the advantage of enhancing the local effect through a non-disturbed blood supply (*Rosen et al.*, 2003, Yeh et al., 2005).

Following neoadjuvant chemotherapy, accurate assessment of early tumor response or size of post therapy residual tumor burden and location is necessary for planning

the future medical or surgical roadmap of the patient. Monitoring of response has traditionally been based on physical examination, mammography, and sonography of the breast. these techniques However. were found result of unsatisfactory accuracy due the development to chemotherapy-induced fibrosis (Loo et al., 2008).

Advanced MRI imaging techniques as Magnetic resonance spectroscopy (MRS) - Pharmacokinetic assessment in DCE (MRI) - Diffusion weighted imaging (DWI) have shown to be of great importance in monitoring patient's response to chemotherapy, and in differentiating responders from non-responders early during therapy(*Rosen et al. 2003 Pickles et al., 2005*).

They also play an important role in assessment of tumor extent after the end of the cycles of chemotherapy (*Balu-Maestro et al.*, 2002).

Aim of work

The purpose of this study is to evaluate the diagnostic ability of advanced MRI imaging techniques in predicting the effect of neoadjuvant chemotherapy on breast cancer early in the treatment regimen and evaluating its effect during and after the course.