Cairo University Faculty of Veterinary Medicine Department of Pathology

Pathological And Clinicopathological Studies On Nano Technology As A Tool for Treatment of Diethylnitrosamine-induced Hepatic Affections in Albino Rats

Thesis Presented by

Eman Ibrahim Hassanen Ibrahim

(B.V.Sc. 2008- M.V.Sc. 2012)
For Ph.D. in Veterinary Medical Science, Veterinary Pathology (General, Special and Postmortem)

Under Supervision of Prof. Dr. Adel Mohammed Bakeer

Professor of Pathology
Faculty of Veterinary Medicine
Cairo University

Dr. Reda Mohammed Sayed

Lecturer of Pathology
Faculty of Veterinary Medicine
Cairo University

Dr. Taher Ahmed Salah El Den

Head of Nanotechnology Center Agricultural Research Center

2016

Supervision Sheet

Thesis is Under supervision of:

Prof. Dr. Adel Mohammed Bakeer

Professor of Pathology
Faculty of Veterinary Medicine - Cairo University

Dr. Reda Mohammed Sayed

Lecturer of Pathology
Faculty of Veterinary Medicine - Cairo University

Prof. Dr. Taher Ahmed Salah El-Den

Head of Nanotechnology Center Agriculture research center

Cairo University
Faculty of Veterinary Medicine
Department of Pathology

Abstract

Name: Eman Ibrahim Hassanen Ibrahim Date and place of birth: 23/4/1986, Giza

Nationality: Egyptian.

Title of thesis: Pathological And Clinicopathological Studies On Nano Technology As A Tool For Treatment of Diethylnitrosamine-induced Hepatic Affections In

Albino Rats

Ph.D. degree in Veterinary Medical Science (Veterinary Pathology), 2016

Supervisors:

Prof. Dr. Adel Mohammed Bakeer

Professor of Pathology Faculty of Veterinary Medicine - Cairo University

Dr. Reda Mohammed Sayed

Lecturer of Pathology
Faculty of Veterinary Medicine - Cairo University

Dr. Taher Ahmed Salah El-Den

Head of Nanotechnology Center Agriculture research center

This study was designed to perform the ability of gold nanoparticles (GNPs) to improve the hepatotherapeutic effect of cisplatin against diethylnitrosamine (DENA)-induced Hepatocarcinogenicity with minimal side effect. 13nm sized GNPs were prepared by citrate reduction method and conjugated by cisplatin, and then the prepared particles were characterized by using U.V. spectrophotometer, TEM and Zetasizer nano. The experiment was carried out on 120 male albino Wister rats (average b.wt 70-100g). The animals were divided into 2 groups, group (A) kept as negative control and group (B) received DENA and CCL4. Each group was subdivided into 7 subgroups according to different methods of treatments. Concerning group (B) the 1^{st} group received DENA and CCL4 then kept as positive control. The 2^{nd} and 3^{rd} group received DENA and CCL4 then treated by cisplatin for short and long period respectively. The 4th and 5th group received DENA and CCL4 then treated by GNPs for short and long period respectively. The 6th and 7th group received DENA and CCL4 then treated by GNPs-cisplatin conjugates for short and long period respectively. Group (A) treated with the same methods as in positive control groups. Then recording the clinical signs, body and tissue weights, clinical biochemical parameters (ALT, AST, ALP, T.Bil., D.Bil. and GGT), liver oxidative stress markers (MDA, GSH and CAT) as well as gross lesions, histopathological lesions of liver and kidneys and immunohistochemical staining of liver tissues were done. GNPs residues were determined in different organs by using ICP-MS to study the biodistribution of GNPs. The results of this study revealed the antioxidant and hepatotherapeutic effect of nontoxic GNPs against DENA-induced hepatocarcinogenicity and also confirmed the detoxification of cisplatin by GNPs.

Key words: Gold nanoparticles- cisplatin- diethylnitrosamine- carbon tetrachloride- oxidative stress.

<u>Acknowledgement</u>

In actual fact, the playful thanks at first to our merciful **Allah** who give me every thing I have.

I would like to express my deepest heartfelt gratefulness and appreciation to my supervisor *Prof. Dr. Adel Mohammed Bakeer*, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University for his kind supervision, scientific guidance, continuous support, encouragement, assistance and constructive criticism which made the completion of this work.

My deepest heartfelt gratefulness and appreciation is to my supervisor *Dr. Reda Mohammed Sayed*, Lecturer of Pathology, Faculty of Veterinary Medicine, Cairo University for her guidance, assistance, continuous support and encouragement.

Deepest thanks and appreciation are also extended to my supervisor *Prof. Dr. Taher Ahmed Salah El-Den*, Head of Nanotechnology Center, Agriculture Research Center for his technical guidance and great assistance for the work of nanoparticles preparation and characterization.

I would like to express my deepest thanks, appreciation and gratefulness to all members in the department of Pathology, Faculty of Veterinary Medicine, Cairo University for their cooperation, great help and care they provided me.

I would like to express my thanks to my parents, my husband and my lovely daughter and son for their patience, continuous support, encouragement and assistance all over the time.

"Thank You All"

List of CONTENTS

INTRODUCTION

REVIEW	OF I	ITER	ATURE
	\ /	, , , , , ,	-

1- Liver	histology and physiology	1
2- Hepat	totoxicity	1
3- Patter	rn of liver injury	7
4- Liver	regeneration	27
5- Liver	function tests	29
6- Nanot	technology (definition and application)	32
7- Nanon	medicine (definition and application)	33
8- Nano	Onchology	34
	ry of use gold and gold nanoparticles in medicine	36
	rtance of gold nanoparticles	37
-	lar uptake and accumulation of gold nanoparticles	38
12-Chem	ical preparation of gold nanoparticles	39
	ods of detection of gold nanoparticles	42
	ity and biocompatibility of gold nanoparticles	44
15-Appli	cation of gold nanoparticles in medicine	46
16-Uses	of gold nanoparticles in different liver affections	48
17-Cispla	atin	49
18-Detox	ification of cisplatin by gold nanoparticles	51
MATERIA	LS AND METHODS	
1- Mate	rials	
1-1-	Animals	54
1-2-	Diagnostic kits	54
1-3-	Drugs and chemicals	54
1-4-	Stains used for histopathological studies	55
1-5-	Immunohistochemical stains for tumor markers	56
1-6-	Instruments	56

2- Methods

2-1- Experimental procedure	57
2-2- Experimental design	59
2-3- Clinical observation	61
2-4- Animal body and tissue weighting	61
2-5- Sampling	61
2-6- Immunohistochemical staining	64
2-7- Preparation of liver tissue homogenates	65
2-8- Evaluation of biochemical parameters	66
2-9- Statistical analysis	67
RESULTS	
1- Characterization of the prepared nanoparticles	68
2- Clinical signs	73
3- Animal body and liver weights	74
4- Clinical biochemistry finding	76
5- Tissue distribution of GNPs	80
6- Postmortem finding in liver and kidneys	80
7- Histopathological finding	86
8- Grading and scoring of hepatotoxicity	94
9- Immunohistochemical staining	130
DISCUSSION	140
SUMMARY AND CONCLUSION	154
REFERENCES	158

List of tables

Table no.	Content of table	Page no.
1	Experimental design	59
2	The different treatment procedures	60-61
3	Rat's body weight (/grams) from the start point of the experiment till 8 th month post injection of DENA	74
4	Rat's body weight (grams) in different groups at 10 th month before treatments and at 11 th month after treatment commencement	75
5	Relative liver weights (/grams) at 2 nd , 5 th and 8 th month post injection of DENA	76
6	Relative liver weights (/grams) in different groups at 11 th month of the experiment after treatment commencement	76
7	The effect of different treatment on serum ALT, AST and ALP at 11 th month from the start point of the experiment	77
8	The effect of different treatment on serum total and direct bilirubin and GGT at 11 th month from the start point of the experiment	78
9	The effect of different treatment on liver oxidative stress value at 11 th month from the start point of the experiment	79
10	Tissue distribution of GNPs in different organs of experimental rats at 11 th month from the start point of the experiments	80

List of figures

Fig. no.	Content of figure	Page no.
1	Spectrophotometer results of GNPs characterization showing	68
	peak absorption (0.97) at wavelength 530 nm	
2	Spectrophotometer results of GNPs-cisplatin conjugates	69
	characterization showing no absorption	
3	Transmission electron microscope image showing spherical	69
	shapes of GNPs with different sizes ranging from (13-50) nm	
4	Transmission electron microscope image showing shell of	70
	cisplatin conjugate around GNPs	
5	Transmission electron microscope image showing spherical	70
	shapes of GNPs-cisplatin conjugates with different sizes ranging	
	from (50-100) nm	
6	Particle size distribution by Zetasizer nano showing peak	71
	percentage (20.32%) at 17.5 nm diameter.	
7	Particle size distribution by Zetasizer nano showing peak	71
	percentage (32.32%) at 58.5nm diameter.	
8	Zeta potential distribution of the prepared particles showing peak	72
	count (82.1% and 17.9%) of the particles at -30.4 and -1.38 mV	
	zeta potential respectivelly.	
9	Zeta potential distribution of the prepared particles showing peak	72
	count (100%) of the particles at-0.48 mV mV zeta potential	
10	Liver of rat received DENA (5 months) showing pale white focal	82
	areas and raised nodules all over the hepatic parenchyma	
11	Liver of rat received DENA (11 months) showing multiple raised	82
	nodules all over the liver	
12	Liver of rat received DENA (11 months) showing hepatomegally	83

	with rounded hepatic borders	
13	Liver of rat received DENA (11 months) showing multiple white	83
	raised nodules	
14	kidney of rat received DENA and CCL4 (11 months) showing	84
	pale white focal areas of necrosis together with reddish areas of	
	congestion	
15	kidney of rat received DENA and CCL4 (11 months) showing	84
	multiple white different sized nodules	
16	kidney of rat received DENA and treated by cisplatin showing	85
	multiple white different sized nodules	
17	Liver of rat received DENA and CCL4 (3months) showing	96
	mononuclear inflammatory cells infiltration in sinusoids and	
	portal area with fibroblast cells proliferation. Hepatocytes with	
	karyomegalic nuclei and prominent nucleoli (H&E stain X400).	
18	Liver of rat injected by DENA and CCL4 (3months) showing	96
	vacuolation and hyperplasia of epithelial lining bile ducts as well	
	as fibroblastic proliferation in portal area (H&E stain X400).	
19	Liver of rat injected by DENA and CCL4 (3months) showing	97
	small clear focus of hepatocellular alteration (H&E stain X400).	
20	Liver of rat received DENA and CCL4 (5 month) showing focal	97
	hepatocellular coagulative necrosis infiltrated with inflammatory	
	cells surrounded by karyomegalic hepatocytes with prominent	
	nucleoli (H&E stain X400).	
21	Liver of rat received DENA and CCL4 (5 month) showing	98
	karyomegalic nuclei with prominent nucleolus in most of	
	hepatocytes with diffuse oval cells proliferation (arrow) in	

	between hepatocytes (H&E stain X 400).	
22	Liver of rat received DENA and CCL4 (5 month) showing karyomegalic nuclei with prominent nucleolus in most of hepatocytes with diffuse Kupffer cells proliferation in between hepatocytes and fibrosis in portal area (H&E stain X 400).	98
23	Liver of rat injected by DENA and CCL4 (5months) showing hepatocytes with multiple mitotic figures (arrow), karyomegalic nuclei and prominent nucleoli as well as hyperactivity of Kupffer cells (H&E stain X400).	99
24	Liver of rat received DENA (8months) showing microvesicular steatosis and vacuolation of hepatocytes (H&E stain X400).	99
25	Liver of rat injected by DENA and CCL4 (8months) showing focal hemorrhage in between hepatocytes in hepatic parenchyma (H&E stain X400).	100
26	Liver of rat injected by DENA and CCL4 (8months) showing large clear irregular focus of hepatocellular alteration (H&E stain X200).	100
27	Liver of rat injected by DENA and CCL4 (8months) showing focal circumscribed area of vacuolated hepatocytes with compression of normal adjacent parenchyma (H&E stain X100).	101
28	Higher magnifications of hepatocellular adenoma showing vacuolated hepatocytes compress to the adjacent hepatic parenchyma (H&E stain X400).	101
29	Liver of rat injected by DENA and CCL4 (8months) showing fibrosis and fat cell metaplasia in glisonian capsule (H&E stain X100).	102
30	Liver of rat injected by DENA and CCL4 (8months) showing	102