

MRI DIFFUSION IN MEDIASTINAL MASSES

Thesis
Submitted for partial fulfillment of the M.D Degree in Diagnostic Radiology

By
Moustafa Ahmed Khairy Mohamed
(M.Sc. Cairo University)

Supervisors

Dr. Youssriah Yahia Sabri

Professor of Diagnostic Radiology Faculty of Medicine Cairo University

Dr. Maryan Fayek Farid

Lecturer of Diagnostic Radiology Faculty of Medicine Cairo University

Dr. Takeya Ahmed Taymour

Lecturer of Diagnostic Radiology Faculty of Medicine Cairo University

> FACULTY OF MEDICINE CAIRO UNIVERSITY 2015

بسم الله الرحمن الرحيم قَالُوا شُرْحَازَكَ لاَ عِلْمَ لَزَا قَالُوا شُرْحَازَكَ لاَ عِلْمَ لَزَا إِلاَّ مَا عَلَمْتَذَا إِنَّكَ أَنْ شَا الْعَلِيمُ إِلاَّ مَا عَلَمْتَذَا إِنَّكَ أَنْ شَا الْعَلِيمُ الْعَلِيمُ الْحَكِيمُ الْحَكِيمُ الْحَكِيمُ

صدق الله العظيم الآية (32) سورة البقرة

Acknowledgment

It is the faith and belief in almighty Allah that gave me the strength all through that work till it is finished.

I would like to express my profound thanks, sincere and deep gratitude to **Dr. Youssriah Yahia Sabri** Professor of Radiodiagnosis, Cairo University for her valuable suggestions, kind guidance, encouragement, valuable time and effort in making this study possible.

I would like to thank **Dr. Maryan Fayek** and **Dr Takeya Taymour** who were very patient with me and gave me much of their time, effort and care.

Special thanks to **Dr. Marwa Moawad** who gave me great help to complete this study by referring cases for MRI examination and doing biopsy for the cases.

Great thanks to **Dr. Heba Khafagy** who referred cases from Oncology Department for MRI examination.

I would like also to thank my family for their patience and support without which the completion of this work would not have been possible.

List of Abbreviations

ADC apparent diffusion coefficient

AP aorto-pulmonary

CR computed radiography

CT computed tomography

DWI diffusion weighted images

ECG electraocardiogram

FDG fluorodeoxyglucose

FIESTA fast imaging with steady state acquisition

GCT germ cell tumour

HD Hodgkin disease

IASLC International Association for the Study of Lung Cancer

IVC inferior vena cava

mm²/s square millimeters per second

MPGs motion-probing gradients

MRI magnetic resonance imaging

NaF sodium fluoride

NHD non-Hodgkin disease

NSCLC non small cell lung cancer

PET Positron emission tomography

ROC Receiver operator characteristic

ROI region of interest

Sec /mm² second per millimeter squared

SCLC small cell lung cancer

SD standard deviation

SVC superior vena cava

TFE turbo field echo

TNM tumor-node-metastasis

TSE turbo spin echo

WHO world health organization

WI weighted images

List of tables

No.		Page
Table1	Nodal stations and zones in the IASLC lymph	19
	node map	
Table 2	Compartmentalization of mediastinal mass	24
	lesions	
Table 3	TNM staging system for lung cancer	44
Table 4	Summary of patients' diagnoses	99
Table 5	ADC values in cases of central mass with post	102
	obstructive collapse	
Table 6	Associated MRI findings in patients with	105
	bronchogenic carcinoma	
Table 7	Quantitative analysis of DW imaging of lymph	107
	nodes in sarcoidosis and lymphoma	
Table 8	Summary of ADC sensitivity and specificity for	109
	differentiating sarcoidosis and lymphoma at	
	different cut off values	
Table 9	ADC measurements in thymoma, angiosarcoma	111
	and carcinoid	

List of Figures

Figure	Content	Page
Number		
Figure 1	Lateral radiograph showing Felson's mediastinal	5
	compartments	
Figure 2	AP radiograph showing Heitzman's mediastinal	6
	compartments	
Figure 3	Drawing illustrates the anterior mediastinum	7
Figure 4	Drawing illustrates the middle mediastinum	8
Figure 5	Drawing illustrates the posterior mediastinum	10
Figure 6	Illustration shows the IASLC lymph node map.	18
Figure 7	MRI T1 weighted images for demonstration of	20
	structures of mediastinum	
Figure 8	Coronal and sagittal MRI images for	22
	demonstration of structures of mediastinum	
Figure 9	(a) Coronal multiplanar reconstruction CT scan of	25
	the chest showing mediastinal goiter with (b)	
	Photograph of the resected surgical specimen of	
	the mass	
Figure 10	(a) Sagittal contrast-enhanced CT scan of the	26
	chest showing heterotopic mediastinal goitre.	
	(b) Axial contrast-enhanced CT scan of the chest	
	showing anaplastic thyroid carcinoma	

Figure 11	Non-contrast-enhanced CT scan showing thymic	28
	lymphoid hyperplasia in a 41-year-old woman	
	with myasthenia gravis.	
E: 12		20
Figure 12	Non-contrast-enhanced CT scan, MRI in-phase	29
	and opposed-phase in cases of thymoma and	
	thymic hyperplasia	
Figure 13	Non-contrast-enhanced CT scan and MRI of the	32
	chest showing a 57-year-old man with a thymoma.	
Figure 14	Contrast-enhanced CT scan of the chest showing	34
	mature cystic teratoma in a 40-year-old man with	
	photograph of the surgical specimen.	
Figure 15	Frontal chest radiograph, contrast-enhanced CT	36
	and photomicrograph of a case of Nodular	
	sclerosis Hodgkin lymphoma in a 44-year-old	
	woman.	
Figure 16	Axial T1-weighted MR image of the chest for a	38
	16-year-old man with anterior mediastinal	
	T-cell lymphoblastic lymphoma	
Figure 17	Axial non contrast CT scan of the chest showing	40
	enlarged lymph nodes in a case of sarcoidosis	
Figure 18	CT scan of the chest showing bronchogenic cyst	46
Figure 19	Contrast-enhanced CT scan and T2-weighted fat-	47
	suppressed MR image of the chest showing	
	duplication cyst in a 42-year-old man.	
Figure 20	MRI of the chest demonstrating a pericardial cyst	48
Figure 21	Postero-anterior chest radiograph and CT scan	49
	demonstrating right paratracheal lymphadenopathy	

Figure 22	Postero-anterior chest radiograph and CT scan	50
	demonstrating aorto-pulmonary window	
	lymphadenopathy	
Figure 23	Postero-anterior chest radiograph and CT scan demonstrating paraspinal abscess	50
Figure 24	Axial CT scan of the chest showing a large	51
	aneurysm of the descending thoracic aorta	
Figure 25	Enhanced CT scan of the chest shows anterior mediastinal teratoma	52
Figure 26	Contrast-enhanced CT scan of the chest showing right cardiophrenic angle pericardial cyst	53
Figure 27	Contrast-enhanced CT scan of the chest reveals a middle mediastinal mass (right atrial myxoma)	54
Figure 28	PET and PET/CT images showing metastatic	59
	mediastinal lymph nodes in 70-year-old man with	
	adenocarcinoma in left upper lobe.	
Figure 29	CT, PET and PET/CT fusion image showing	60
	multiple enlarged mediastinal and right cervical	
	lymph nodes in a 14-year-old girl with lymphoma	
Figure 30	Drawing illustrates the depiction of the diffusion of water molecules in intracellular spaces, across cell membranes and extracellular spaces	63
Figure 31	Drawing illustrates the inverse relationship of the	65
	speed of diffusion to the number of cells	
Figure 32	Diagram showing measuring water diffusion	67
	according to Stejskal and Tanner 1965 experiment	

Figure 33	Diagram showing visual lesion characterization with DWI.	70
Figure 34	MRI of the chest with DWI showing thymic non-Hodgkin lymphoma in a 71-year-old man	75
Figure 35	MR and PET/CT images of a 39-year-old woman with lung adenocarcinoma and distal atelectasis	79
Figure 36	MRI of the chest and DWI of a case of central bronchogenic carcinoma with post-obstructive pneumonitis	80
Figure 37	Axial CT, MRI T1WI and diffusion-weighted imaging showing metastatic subcarinal lymph node in a case of small cell lung cancer	83
Figure 38	MRI with DWI showing large neoplastic right mediastinal mass with hilar and prevascular lymph nodes, osseous and hepatic deposits.	85
Figure 39	MRI of the chest with DWI showing right malignant pleural effusion.	87
Figure 40	Diffusion-weighted images of the chest and (ADC) map in a 22-year-old patient with Hodgkin lymphoma.	91
Figure 41	MRI of the chest with DWI showing multiple hilar and mediastinal lymphadenopathies in a case of Hodgkin disease	92
Figure 42	ADC map showing mediastinal lymph nodes in a 40-year-old woman with sarcoidosis	93
Figure 43	Chart demonstrating percentage of central bronchogenic patients under treatment	100

Figure 44	Comparison of ADC values between treated and	101
	untreated cases of bronchogenic carcinoma.	
Figure 45	Comparison of ADC values between lymphoma	108
	and sarcoidosis.	
Figure 46	Case 1	112
Figure 47	Case 2	114
Figure 48	Case 3	116
Figure 49	Case 4	118
Figure 50	Case 5	119
Figure 51	Case 6	121
Figure 52	Case 7	123
Figure 53	Case 8	124
Figure 54	Case 9	126
Figure 55	Case 10	127
Figure 56	Case 11	129
Figure 57	Case 12	131

Table Of Contents

	Page
Introduction	1
Aim of the work	3
Review of literature	
Anatomical back ground	4
Mediastinal mass lesions	23
• Diagnostic approach to mediastinal masses	49
• MR diffusion imaging of mediastinal mass	
lesions	63
Patients and methods	94
Results	99
Case presentation	112
Discussion	132
Summary and conclusion	138
References	142
Arabic Summary	

Abstract

Diffusion-weighted imaging may be useful differentiating besides modalities lymphoma other in sarcoidosis in mediastinal and hilar from lymphadenopathy. MRI can detect and stage lung cancer, and this method could be an excellent alternative to CT or PET/CT in the investigation of lung malignancies and other diseases. Potential future applications of diffusion MRI in malignancies include monitoring the treatment response and detecting recurrent cancer.

Keywords: (magnetic resonance imagimg – diffusion – sarcoidosis – lymphoma– bronchogenic carcinoma)

Introduction

Introduction

MRI of the chest using fast acquisition sequences with a high temporal resolution has become feasible with the recent developments in gradient technology and multichannel coils. Experience with thoracic applications of diffusion weighted imaging (DWI) techniques is still growing, and preliminary studies have reported promising results (**Biederer et al, 2012**).

DWI involves the acquisition of a magnetic resonance signal related to random thermal motion (Brownian motion) or the "diffusion" of water protons in tissue (**Türkbey et al, 2012**).

Diffusion-weighted imaging may be useful beside other modalities in differentiating lymphoma from sarcoidosis in mediastinal and hilar lymphadenopathy. The ADC value in the lymphoma group was lower than in the sarcoidosis group (Gümüşta et al, 2013).

DWI is also recently used to characterize lung lesions, to predict tumor invasiveness in early-stage lung cancer, to detect tumors in collapsed lungs, and for nodal staging of lung cancer (Türkbey et al, 2012).

MRI can detect and stage lung cancer, and this method could be an excellent alternative to CT or PET/CT in the

investigation of lung malignancies and other diseases (Hochhegger et al, 2011).

Recent studies concluded that lung cancers were easily visualised by DWI, and that differentiating central lung cancer from post-obstructive lobar collapse by DWI is feasible.

Quantitative analysis of DWI also enables differentiation of lymph nodes with and without metastasis (Nakayama et al, 2010).

Potential future applications of DWI in malignancies include monitoring the treatment response after chemotherapy or radiation, discriminating post-therapeutic changes from residual tumors, and detecting recurrent cancer (**Türkbey et al, 2012**).

MRI is emerging as a valuable lung imaging modality, together with x-ray and CT. It offers a unique combination of morphological and functional information in a single examination without any radiation burden to the patient. New users are advised to make themselves familiar with the particular advantages and limitations of the technique and its diagnostic scope to appreciate its potential benefits (**Biederer et al, 2012**).