PERCUTANEOUS RADIOFREQUENCY ABLATION VERSUS MICROWAVE ABLATION IN THE TREATMENT OF LUNG MALIGNANCIES

ESSAY

Submitted for fulfillment of the master degree in radio-diagnosis

By Bahaa Eldin Mahmoud Hussein

M.B.B.Ch. Faculty of medicine Cairo University

Under Supervision of

Dr. Amr Abd El Fattah Nassef

Assistant professor of radio-diagnosis Faculty of medicine Cairo University

Dr. Ahmed Sayed Awad

Lecturer of radio-diagnosis
Faculty of medicine
Cairo University

Faculty of medicine Cairo University 2012

Acknowledgment

First and foremost thanks to **God** the Most Gracious, the Most Merciful.

I want to express the great honor of working under the supervision of **Dr. Amr Nassef**, assistant professor of radiology, Cairo University. He has given me guidance and advice in every way he can during the course of this work.

My sincere thanks to **Dr. Ahmed Sayed**, Radiology Lecturer, Cairo University, for his continuous guidance and support.

My thanks and my love to all my professors and colleagues in the Radiology department for their support.

This work would not have been possible without the help of **my dear wife**, I am heartily thankful for her endless love, care and support.

Last but not least I would like to say that I couldn't have reached this point in my life without the enduring efforts of **my family**, no words can give them their right or describe how I am indebted to them.

<u>ABSTRACT</u>

Radiofrequency ablation and microwave ablation have emerged as minimally invasive therapeutic options for malignant lung tumours. The advantages of thermal ablation include selective tissue damage, minimal treatment morbidity and mortality and lower costs compared to surgery. However the procedure is not free of complications. Microwave ablation has less complications rate and shorter treatment time.

KEY WORDS

Thermal ablation – radiofrequency ablation – microwave ablation – lung cancer – minimally invasive techniques – comparison.

TABLE OF CONTENTS

List of abbreviations	I		
List of figures	II – III		
List of tables	IV		
Introduction	1 - 3		
Aim of work	4		
Chapter 1: Pathology of malignant lung neoplasms.	5 - 13		
Chapter 2: Imaging of malignant lung neoplasms.	14 - 24		
Chapter 3: Treatment modalities of malignant lung neoplasms.	25 - 29		
Chapter 4: Physics & basic principles of RFA & MWA	30 - 45		
Chapter 5: Technique of RFA & MWA for lung malignancies	46 - 73		
Chapter 6: Complications of RFA & MWA	74 - 82		
Chapter 7: Comparison between RFA & MWA for lung malignancies	83 - 88		
Summary	89 - 91		
References	92 - 102		
Arabic summary			

LIST OF ABBREVIATIONS

1	
ADC	Apparent diffusion coefficient
BPF	Bronchopleural fistula
CT	Computed Tomography
DWI	Diffusion-Weighted imaging
GGO	Ground glass opacity
HU	Hounsfield unit
IASLC	International Association for the Study of Lung Cancer
MRI	Magnetic resonance imaging
MW	Microwave
MWA	Microwave ablation
NSAID	Non steroidal anti-inflammatory drugs
NSCLC	Non small cell lung cancers
PA	Postero anterior
PET	Positron emission tomography
RF	Radiofrequency
RFA	Radiofrequency ablation
SCC	Squamous cell carcinoma
SCLC	Small cell lung cancer
SIADH	Syndrome of inappropriate ADH production
STIR	Short-time inversion recovery
	Short time thiversion recovery
SVC	Superior vena cava
SVC	Superior vena cava
SVC TPCE	Superior vena cava Transpulmonary chemoembolization

LIST OF FIGURES

		Page
Figure 1	Hilar enlargement in bronchogenic carcinoma	15
Figure 2	Plain X ray of squamous cell carcinoma of bronchus	16
Figure 3	CT of bronchogenic carcinoma as peripheral mass	16
Figure 4	CT shows cavitating bronchogenic carcinoma	17
Figure 5	CT shows Pancoast tumour	20
Figure 6	MRI shows Pancoast tumour	20
Figure 7	Plain x ray show cavitating and calcified metastasis	24
Figure 8	CT shows pulmonary metastatic deposits	24
Figure 9	Various radiofrequency electrodes	34
Figure 10	The StarBurst Xli enhanced RFA device from RITA	34
Figure 11	The Radionics generator	35
Figure 12	The starburst 1500 RF generator from RITA	36
Figure 13	The LeVeen RF generator from Boston scientific	37
Figure 14	Schematic illustrates heat efficacy	40
Figure 15	Schematic illustrates the interaction between water molecules and microwaves	44
Figure 16	Current microwave applicators available for percutaneous tumor ablation	45
Figure 17	CT suite during lung RFA	51
Figure 18	Grounding pads attached to the patient's thighs	52

Figure 19	CT images show deployed electrode during RFA	54
Figure 20	Photographs of StarBurst XL show how to try to spike a tumor bouncing off needle tip	56
Figure 21	CT show ground glass opacity around the lesion indicating the ablated zone	59
Figure 22	Follow up 3 years CT after radiofrequency ablation	59
Figure 23	Follow up 1 week, 1 month, 3 and 6 months CT after radiofrequency ablation	61
Figure 24	Patterns of metabolic uptake of ablated lung cancers in PET/CT	62
Figure 25	PET/CT show successful ablation	63
Figure 26	PET/CT show local recurrence	63
Figure 27	MRI assessment of tumour viability after RFA	66
Figure 28	CT during and after MW ablation	70
Figure 29	CT before, during and after MW ablation	71
Figure 30	CT during and 9 months after MW ablation	71
Figure 31	CT during and 3 months after MW ablation	72
Figure 32	Histological changes after MW ablation	73
Figure 33	CT shows mild pleural effusion and mild pneumothorax after RF ablation	76
Figure 34	CT scans show intra and post procedural pneumothorax	76
Figure 35	CT scans show immediate post RFA Intraparenchymal hemorrhage	78
Figure 36	CT scans show cavitation at the ablated site with drainage tube inserted	80

LIST OF TABLES

		Page
Table 1	WHO histological classification of malignant	7
	lung tumors	/
Table 2	The new staging system for lung cancer	10
Table 3	Summarizes the principles and the	
	differences between the Monopolar and the	32
	bipolar RF systems	
Table 4	Frequency of pneumothorax after	76
	radiofrequency ablation	70

Introduction 1

INTRODUCTION

Primary lung cancer is a severe worldwide health problem causing a greater death than breast, prostate, and colorectal cancer combined (Brescia, 2001). Surgical resection is the treatment of choice for primary non small cell lung cancers (NSCLCs) and isolated pulmonary metastases from colorectal cancer. However, approximately two-thirds of all NSCLC patients are ineligible for curative resection due to tobacco-related comorbidity, concomitant extrapulmonary diseases and/or advanced age. Surgery is excluded in a similar percentage of pulmonary metastases patients due to the presence of multifocal disease. In any case, the surgical approach is not free from complications, including mortality, and it is difficult to repeat for recurrences (Licker et al., 2002). Systemic chemotherapy and radiation therapy are often the only options offered to lung cancer patients, but these approaches produce substantial increases in survival only in small subsets of highly selected cases (Rossi et al., 2006).

As compared to lung resection local ablative methods bear indisputable advantages. The surgical trauma may contribute to recurrence, growth of metastases, and metastatic spread. These unwanted consequences of surgery depend on factors such as immunosuppression, shedding of tumor cells into the wounded area and the circulation as well as the production and release of growth factors for wound healing, which influence tumor cell adhesion and growth (Steinke, 2006).

Introduction 2

The term tumor ablation is defined as the direct application of chemical or thermal therapies to a specific focal tumor in an attempt to achieve eradication or substantial tumor destruction. The term "direct" aims to distinguish these therapies from others that are applied orally or via an intravascular or peripheral venous route. Different modalities are used for tumor thermal ablation including radiofrequency, microwave, laser, high intensity focused ultrasound and cryoablation (Goldberg et al., 2003).

Percutaneous radiofrequency thermal ablation (RFA) under CT guidance is a minimal invasive technique that is used over a decade for the treatment of primary and secondary liver tumors. It is a low cost method that provides treatment on an outpatient basis and has low complication rates in experienced hands. RFA under CT guidance without thoracotomy may be considered an interesting alternative of local treatment in inoperable cases of primary and metastatic lung tumors (**Thanos et al., 2006**).

Early clinical experiences with RFA suggest that it could serve as a potential addition (or alternative) to surgery and radiation therapy for the local treatment of primary and secondary malignant lung tumors. Major complications are rare, with post procedural fever, pain, and pneumothorax being most commonly reported (Nguyen et al., 2006).

Microwave ablation is the most recent development in the field of tumor ablation. Microwave ablation refers to the use of electromagnetic methods for inducing tumor destruction by using Introduction 3

devices with frequencies of at least 900 MHz (Shibata et al., 2002). The technique allows for flexible approaches to treatment, including percutaneous, laparoscopic, and open surgical access. The main advantages of microwave technology, when compared with existing thermoablative technologies, include consistently higher intratumoral temperatures, larger tumor ablation volumes, faster ablation times, less procedural pain and no need for using grounding pads. Microwave ablation has promising potential in the treatment of primary and secondary liver disease, primary and secondary lung malignancies, renal and adrenal tumors and bone metastases (Simon et al., 2005).

Microwave ablation offers many of the advantages of RF ablation while possibly overcoming some of the limitations. Since microwave ablation does not rely on conduction of electricity into tissue, it is not limited by charring. Therefore, temperatures greater than 100°C are readily achieved, which potentially results in a larger zone of ablation, faster treatment time, and more complete tumor kill. In addition, microwave ablation has a much broader power field than does RF ablation. This may allow for larger zones of thermal ablation and a more uniform tumor kill. With several theoretic and practical advantages, microwave ablation is a promising new option in the treatment of surgically unresectable tumors (Wright et al., 2005).

Aim of work

AIM OF WORK

To demonstrate the role and to compare between imaging guided percutaneous radiofrequency ablation and microwave ablation in the treatment of primary and metastatic lung cancer regarding the indications, technique, advantages, limitations and post procedural follow up as well as the lung state before and after each procedure using different imaging modalities.

CHAPTER 1

Pathology of malignant lung neoplasms

I- Primary lung malignancies:

Lung cancer is the most commonly diagnosed cancer worldwide, and its incidence continues to grow. An estimated 1.5 million new cases of lung cancer were diagnosed globally every year, accounting for approximately 12% of the global cancer burden. Among all cancers, lung cancer has the highest mortality rate in most countries (WHO 2003).

• Age distribution for lung cancer

Lung cancer occurs predominately in persons aged 50-70 years. The probability of developing lung cancer remains very low until the age of 40 years in both sexes. It then slowly starts to rise and peaks among those older than 70 years. The risk of developing lung cancer remains higher among men in all age groups after age 40 years (**Ries et al., 2005**).

• Sex distribution for lung cancer

Lung cancer is more common in men than in women. Most western countries have encountered a disturbing trend of increasing prevalence in women and younger patients. Women have a higher incidence of localized disease at presentation and of adenocarcinoma and typically are younger when they present with symptoms. This changing pattern of disease is due to the increase in cigarette smoking among the general population, and women in particular (Ries et al., 2005).