

PREVALENCE OF MICROALBUMINURIA IN CLINICALLY HEALTHY SIBLINGS OF PATIENTS OF SLE WITH AND WITHOUT LUPUS NEPHRITIS

Thesis

Submitted for Partial Fulfillment of Master Degree

In Internal Medicine

By Heba Mostafa Fahmi (M.B;B.Ch.)

Supervised by

Prof. Dr. Magdy El Sharkawy

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Prof. Dr. Dalia Fayez Mohammed

Professor of Rheumatology and Rehabilitation Faculty of Medicine - Ain shams University

Prof. Dr. Ahmed Aziz Abd-Elnaby

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2016

ACKNOWLED GEMENT

First of all, thanks to

ALLAH

The most merciful for giving me the strength to complete work

I wish to express my deepest gratitude to *Prof. Dr. Magdy El Sharkawy, Professor of Internal Medicine & Nephrology,* for his guidance, scientific supervision and support. He has generously devoted much of his time and effort helping me throughout the whole work.

Also, I wish to express my deep gratitude to *Prof. Dr. Dalia Fayez Mohammed, Professor of Rheumatology and Rehabilitation,* for her good support, continuous supervision and help during this work.

I'm very grateful to *Prof. Dr. Ahmed Aziz Abd-Elnaby,* for his great support and guidance.

I would like to thanks my patients for their cooperation and trust, and I wish for all of them the best of health.

Special thanks and deepest gratitude to *Dr. Mohamed Mostafa, Lecturer of Nephrology, Faculty of Medicine, Ain Shams University,* for her advice, support and encouragement all the time for a better performance.

All my thanks and loves are offered to my family, for their continuous encouragement and support. I really can't express my thanks and love to all family.

Heba Mostafa

List of Contents

Ti	Title Page		
•	List of Abbreviations	I	
•	List of Tables	III	
•	List of Figures	V	
•	Abstract	VII	
•	Introduction	1	
•	Aim of the Work	5	
•	Review of Literature		
	- Systemic Lupus Erythematosus	6	
	- Lupus nephritis	38	
	- Genetic role in systemic lupus erythmatosu	ıs56	
•	Patients and Methods	68	
•	Results	75	
•	Discussion	89	
•	Summary	95	
•	Conclusions	96	
•	Recommendations	97	
•	References	98	
•	ArabicSummary		

List of Abbreviations

A.G.D.S	.Acute Syndron		ro-Intestinal	Distress
ACR	.America	n Coll	ege of Rheum	natology
Alb	.Albumin	/Crea	atinine Ratio	
ANA	Anti-Nuclear Antibody			
AZA	Azathioprine			
BUN	Blood Urea Nitrogen			
CNV	Copy Number Variation			
CNS	Central Nervous System			
CRP	C-Reactive Protein			
CYC	Cyclophosphamide			
DAMPs	.Damage Patterns		ssociated	Molecular
DCs	Dendritic Cells			
DHEA	DehydroEpiandrosterone			
DNA	Deoxy Ribonucleic Acid			
EBV	Epstien Barr Virus			
ECLAM	European Community Lupus Activity Measure			
ESR	.Erythroc	yte S	edimentation	Rate
F/M	Female/Male Ratio			
FDR	First Degree Relatives			
GBM	IGlomerular Basement Membrane			
GM-CSF	.Granulo Stimulat	-		e Colony
GN	Glomerulonephritis			
GWAS	Genome Wide Association Studies			
hCRH	.Human Hormon		rticoTropin	Releasing

List of Abbreviations

HLA	Human Leucocytic Antigen		
I.L	Interleukin		
IgA	Immunoglobulin A		
IgG	Immunoglobulin G		
L.N	Lupus Nephritis		
MHC	Major Histocompatibility Complex		
MMF	MycophenolateMofetil		
mRNA	Micro-Ribonucleic Acid		
N.P SLE	ENeuro-Psychiatric Lupus		
NRH	Nodular Regenerative Hyperplasia		
NSAIDs	Non-Steroidal Anti-Inflammatory Drugs		
PAMPs	Pathogen Associated Molecular Patterns		
PLN	Proliferative Lupus Nephritis		
RNA	Ribo Nucleic Acid		
JDM	Juvenile Diabetes Mellitus		
JIA	Juvenile Idiopathic Arthritis		
SELENA	Safety of Estrogen in Lupus Erythematosus National Assessment		
SLAM	Systemic Lupus Activity Measure		
SLEDAI	Systemic Lupus Erythematosus Disease Activity Index		
SLE	Systemic Lupus Erythematosus		
SNAP	SNAPSingle Nucleotide Polymorphisms		
TLR	Toll-Like Receptor		
TNF -α	Tumornecsosis Factor Alpha		
u.s	. S United States		
u.v	Ultraviolet Light		

List of Tables

Table No.	Title Page
Table (1):	International Society of
	Nephrology/Renal Pathology Society
	(ISN/RPS) 2003 classification of
	lupus nephritis40
Table (2):	WHO Classification and treatment of
	lupus nephritis49
Table (3):	Comparison between group 1 and
	group II as regard age in sibling
	cases
Table (4):	Comparison between group I and
	group II as regard sex in sibling
	cases
Table (5):	Comparison between groupland
	group II as regard ANA in sibling
	cases80
Table (6):	Comparison between female and
	male as regard ANA in sibling cases 81
Table (7):	Comparison between group 1 and
	group II as regard quantitative
	assessment of proteinuria in sibling
	cases
Table (8):	Comparison between group 1 and
	group II as regard microalbuminuria
m 11 (0)	in sibling cases
Table (9):	Comparison between different
	sexesas regard quantitative
	assessment of proteinuria in group 1
	and group II of sibling cases85

List of Tables

Table No.	Title	Page	
Table (10):	Comparison between	different sexes	
	as regard fr	equency of	
	microalbuminuria in	group 1 and	
	group II of sibling cases86		
Table (11):	Comparison between ANA positive		
	and negative cases in subgroups as		
	regard microalbuminuria87		
Table (12):	Correlation between		
	microalbuminuria and age in group I		
	and group II of sibling cases88		

List of Figures

Figure No.	Title	Page
Fig. (1):	Comparison between SLE cases regard gender	
Fig. (2):	Comparison between sibling cases regard age	
Fig. (3):	Comparison between sibling cases regard gender	
Fig. (4):	Comparison between groups regard ANA seropositivity	
Fig. (5):	Relation between gender and A seropositivity in subgroups	
Fig. (6):	Microalbuminuria level in stud groups	
Fig. (7):	Comparison between different sex regard microalbuminuria in group and group II of sibling cases	o 1

PREVALENCE OF MICROALBUMINURIA IN CLINICALLY HEALTHY SIBLINGS OF PATIENTS OF SLE WITH AND WITHOUT LUPUS NEPHRITIS

Thesis

Submitted for Partial Fulfillment of Master Degree

In Internal Medicine

By
Heba Mostafa Fahmi
(M.B;B.Ch.)

Discussion Committee Members are

Prof. Dr. Magdy El Sharkawy

Professor of Internal Medicine & Nephrology Faculty of Medicine - Ain Shams University

Prof. Dr. Tarek Mohammed EL Baz

Professor of Internal Medicine & Nephrology Faculty of Medicine - Al Azhar University

Prof. Dr. Inas Mohammed Sabry

Professor of Internal Medicine
Faculty of Medicine - Ain Shams University

Prevalence of Microalbuminuria in Clinically Healthy Siblings of Patients of SLE with and without Lupus Nephritis

Abstract: Systemic lupus erythematosus (SLE) is a chronic, relapsing, inflammatory, and often multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidney and serosal membranes. Microalbuminuria is defined as excretion of between 30 and 300 mg of albumin a day in the urine of 20-200 ug/min of albumin. Possible familial tendency of SLE is still a mysterious question which has not been properly answered in the literature till now, yet there's growing evidence that possible genetic aberration in families may play a significant pathogenic role.

Results: We found that siblings of patients with nephritis had a relatively higher rate of microalbuminuria though no statistical significance could be obtained.

Keywords: SLE, microalbuminuria, siblings.

INTRODUCTION

Systemic Lupus Erythematosus is a systemic autoimmune disease affects any part of the body, as occurs in other autoimmune diseases, the immune system attacks the body's cells and tissue, resulting in inflammation and tissue damage, it is a type iii hypersensitivity reaction caused by antibody- immune complex (*James et al.*, 2005).

SLE most often harms the heart, joints, skin, lungs, blood vessels, liver, kidneys, and nervous system, The course of the disease is unpredictable, with periods of illness (called flares) alternating with remission, The disease occurs nine times more often in women than in men, especially in women in child- bearing years ages 15 to 35, and is more common in those also of non- European descent (*Anisur et al.*, 2008).

SLE is treatable through addressing its symptoms, mainly with cyclophosphamide, corticosteroids and immunosuppressants, there is currently no cure, SLE can be fatal, although with recent medical advances fatalities are becoming increasingly rare, Survival for people with SLE in the United States, Canada, and Europe is approximately 95% at five years, 9% at 10 years, and 78% at 20 years (Harrison's Internal Medicine).

Family studies have revealed a higher than expected prevalence among the relatives of patients with SLE, Although the precise prevalence of familial SLE is not known, approximately 1% of patients with SLE have a first- degree relative, as compared to 1% of patients in control families, In familial SLE, the most frequent mode of familial intra-aggregation is affected sibling pairs and females predominate, with mother- daughter and sister-sister pairs being the most common and father- son pairs occurring relatively rarely (*Petty et al.*, 2005).

SLE is more common in first-degree relatives of patients with SLE (familial prevalence of 10%-12%), Concordance rates are higher in monozygotic twins (24-58%) than in dizygotic twins (2-5%), supporting an important role for genetics in the development of SLE (*Harley et al.*, 2008).

First- degree relatives (mother, father, brother, sister) of people with lupus have an eightfold to nine fold increased risk of having lupus compared with the general public (*William*, 2009).

The first mechanism may arise genetically, Research indicates that SLE may have a genetic link, SLE does run in families, but no single, causal, gene has been identified. Instead, multiple genes appear to influence a person's

chance of developing lupus when triggered by environmental factors, the most important genes are located in the HLA region on chromosome 6, where mutations may occur randomly (de novo) or may be inherited, HLA class I, class II, and class III are associated with SLE, but only class I and class II contribute independently to increased risk of SLE (*Martens et al.*, 2009).

The inheritance of SLE does not follow simple Mendelian rules as we would expect for a single major gene effect, instead a polygenic model of susceptibility provides the best explanation for the familial clustering (*Han et al.*, 2009).

Microalbuminuria is defined as excretion of between 30 and 300 mg of albumin a day in the urine of 20-200 ug/min of albumin, Less than 30 mg is insignificant, Albumin levels below 300 mg a day is too small to be detected by standard protein dipstick testing, so any positive result is more severe than microalbuminuria (*Herbet et al.*, 2009).

Lupus nephritis, one of the most serious manifestations of systemic lupus erythematosus (SLE), usually arises within 5 years of diagnosis.

Autoimmunity plays a major role in the pathogenesis of lupus nephritis; the immunologic mechanisms include

production of autoantibodies directed against nuclear elements.

These autoantibodies form pathogenic immune complexes; Deposition of these immune deposits in the kidneys initiates an inflammatory response by activating the complement cascade and recruiting inflammatory cells that can subsequently be observed on biopsy specimens (*D'Agati et al.*, 2007).

Around 50% of patients with SLE are affected by lupus nephritis, with 10-20% having evidence of lupus nephritis at presentation (*Brent et al.*, 2008).

Systemic lupus erythematosus is a chronic autoimmune disease, the role of various pathogenic factors, leading to excessive activation of lymphocytes, leading to immune complex deposition in the kidneys and kidney damage affecting the renal filtration and reabsorption, resulting in increased urinary protein excretion (*Wang et al.*, 2006).

In patients with systemic lupus erythematosus microalbuminuria did not correlate with renal histology or predict the subsequent development of clinical nephritis (*Velante de Almeida et al.*, 1999).