

ANALYSIS OF INRUSH CURRENTS IN TRANSFORMERS AND THEIR IMPACT ON ELECTROMAGNETIC FORCES

By

Eng. Essam Mohammed Abdo Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

ANALYSIS OF INRUSH CURRENTS IN TRANSFORMERS AND THEIR IMPACT ON ELECTROMAGNETIC FORCES

By

Eng. Essam Mohammed Abdo Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Prof. Dr. Adel Shaltout Prof. Dr. Essam Abou El-Zahab

Professor
Electrical Power and Machines
Department
Electrical Power and Machines
Department
Department
Faculty of Engineering, Cairo University
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

ANALYSIS OF INRUSH CURRENTS IN TRANSFORMERS AND THEIR IMPACT ON ELECTROMAGNETIC FORCES

By Eng. Essam Mohammed Abdo Ali

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in

ELECTRICAL POWER AND MACHINES ENGINEERING

	Approved by the Examining committee:
1 -	Prof . Adel Dia El-din Shaltout Faculty of Engineering- Cairo University
2-	Prof. Essam El-deen Mohammed Abou El-Zahab Faculty of Engineering- Cairo University
3-	Prof. Mahmoud Mohammed Abd Al-Hakeem Faculty of Engineering- Cairo University
1-	Prof. Mohsen Zaki El-Shereef Shoubra faculty of Engineering- Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Essam Mohammed Abdo Ali

Date of Birth: 7 / 4 /1986 **Nationality:** Egyptian

E-mail: Esam_zayd2010@yahoo.com

 Phone:
 0128/7959797

 Address:
 Tukh – Qalybia

 Registration Date:
 1 / 10 / 2011

 Awarding Date:
 / 2016

Degree: Master of Science

Department: Electrical Power and Machines

Supervisors:

Prof. Adel Dia El-din Shaltout

Prof. Essam El-deen Mohammed Abou El-Zahab

Examiners:

Prof. Mohsen Zaki El-shereef

(Shoubra faculty of Engineering – Benha University)

Prof. Mahmoud Mohammed Abd Al-Hakeem

Porf. Adel Dia El-din Shaltout Porf. Essam El-deen Abou El-Zahab

Title of Thesis:

Analysis of Inrush Currents in Transformers and Their Impact on Electromagnetic Forces

Key Words:

Inrush current; radial forces; axial forces; short circuit currents

Summary:

Power transformers are critical links within a power network and therefore any failure can potentially lead to long interruptions and costly repairs. So transformers must be protected well from any kind of overcurrent or overvoltage that could occur during their operation. The transient current that occurs as a result of any sudden change in the voltage on transformers winding is usually known as inrush current.

Radial and axial forces due to inrush and short circuit currents are calculated. Power transformer in the start-up mode has been studied and simulated using MATLAB/SIMULINK tool.

Acknowledgment

Accomplishment of this master degree has been one of the most significant academic challenges I have ever faced. If Allah wills, this degree will be the beginning of my journey.

It is hard to forget people who gave me so much to remember. I wish to thank the following people.

- Prof. Adel Shaltout, words can not indicate to his favor that i owe. I am truly thank him. The thesis would have been impossible without his help, guidance and patience.
- Prof. Essam Abou El-Zahab, i would like to thank him a lot for his encouragement and help.
- Prof. Mahmod Abd Al-Hakeem and Prof. Mohsen Zaki El-shereef, the examining committee members, i would like to thank them for their precious comments during the thesis defense.
- Eng. Islam Abd Elkawy, who gave me valuable advice on academic, practical and personal basis.
- My family, friends and colleagues. Thanks for their continuous encouragement and support.

Table of Contents

Acknowledgment	I
Table of Contents	II
List of Tables	VI
List of Figures.	VIII
List of Symbols and Abbreviations	XVI
Abstract	XIX
CHAPTER 1: Introduction	1
1.1 General	
1.2 Previous work	
1.2.1 Inrush current calculations	
1.2.2 Forces calculations	5
1.3 Thesis objectives	6
1.4 Thesis outline	6
CHAPTER 2: Basics of Transformers and Operation	8
2.1 Introduction	8
2.2 Transformers importance	8
2.3 Magnetic circuit excited by alternating current	9
2.4 Transformer operation.	10
2.5 Transformer structure	14
2.5.1 Transformer winding	14
2.5.2 Transformer core	14
2.5.3 Transformer core materials	16
2.6 Transformer core saturation problems	19
2.6.1 Ferroresonance	19
2.6.1.I Introduction	19

2.6.1.II Ferroresonance effects.	20
2.6.2 Inrush currents	20
2.6.2.I Introduction	20
2.6.2.II Effect of magnetizing inrush current on system operation	26
2.6.2.III Factors affecting magnetizing inrush current	27
2.6.2.IV Elimination of the magnetizing inrush current	29
2.6.2.V Effect of fast acting reclosures in the inrush current	30
CHAPTER 3: Electromagnetic Forces Calculation In Case Of Inrush	
Current and Short Circuit current	32
3.1 Introduction	32
3.2 Electromagnetic forces and electromechanical stresses: analytical	
approach	33
3.3 Short circuit current calculation	34
3.4 Radial electromagnetic forces	36
3.4.1 Introduction	36
3.4.2 Calculation of radial electromagnetic forces	38
3.4.2.I Short circuit radial electromagnetic forces	. 38
3.4.2.II Inrush current radial electromagnetic forces	39
3.5 Axial electromagnetic forces.	41
3.5.1 Introduction	41
3.5.2 Calculation of axial electromagnetic forces	43
3.5.2. I Short circuit axial electromagnetic forces	43
3.5.2. II Inrush current axial electromagnetic forces	45
3.6 Axial forces due to unbalance between windings	47
CHAPTER 4: Transformer Mathematical Model, Inrush Current and Fa	st
Acting Reclosures Analysis, Results and Discussion	48
4.1 Introduction	48
4.2 No load Single phase power transformer mathematical model	
4.2.1 No load Equations	48

4.2.2 The simulation model and results in case of no load operation	51
4.2.3 Simulation Results in case of no load operation	51
4.2.4 Model response for different residual core flux at fixed	
switching on angle ($\alpha = 0$)	53
4.2.5 Model response for different switching-on conditions at fix	ed
residual flux ($\phi_{res} = 30 \% \phi_m$)	58
4.3 Inductive load Single phase power transformer mathematical	
model	62
4.3.1 Inductive load equations.	62
4.3.2 The simulation model and results in case of inductive load	
Operation	63
4.3.3 Model response for different inductive loads	67
4.3.3. I Pure inductive loads (p.f=0.0).	67
4.3.3. II Effect of p.f.	68
4.3.3. III Effect of load impedance at fixed p.f	70
4.3.3. IV Pure resistive loads (p.f=1)	72
4.4 Capacitive load Single phase power transformer mathematical	
Model	75
4.4.1 Capacitive load equations	75
4.4.2 The simulation model and results in case of capacitive load	
Operation	76
4.4.3 Model response for different capacitive loads	80
4.4.3. I Pure capacitive loads (p.f=0.0)	80
4.4.3. II Effect of p.f	81
4.4.3. III Effect of load impedance at fixed p.f	83
4.4.4 Simulation result of Ferroresonance	85
4.5 Recovery inrush current	86
4.5.1 Recovery inrush current simulation model in case of inductive	9
Load Operation	87
4.5.2 Recovery inrush current simulation model in case of resistive	

load Operation	89
4.5.3 Recovery inrush current simulation model in case of capaci	tive
load operation.	. 91
4.6 Effect of fast acting reclosures.	94
4.6.1 Fast acting reclosures simulation model in case of inductive	<u>)</u>
load	94
4.6.2 Fast acting reclosures simulation model in case of pure resis	stive
Load	101
4.6.3 Fast acting reclosures simulation model in case of capacitiv	e
load	105
4.7 Conclusions	. 112
4.8: Forces calculation results	113
4.8.1 Short circuit radial electromagnetic forces results	114
4.8.2 Inrush current radial electromagnetic forces	114
4.8.2.I In case of no-load.	114
4.8.2.II In case of inductive load Fast acting reclosures	115
4.8.3 Short circuit axial electromagnetic forces	. 116
4.8.4 Inrush current axial electromagnetic forces.	. 116
4.8.4.I In case of no-load	. 116
4.8.4.II In case of inductive load Fast acting reclosures	117
	110
CHAPTER 5: Conclusion and Recommended Future Work	. 119
5.1 Conclusion	119
5.2 Recommended future work	120
References	121
Appendix I	. 126
Annendiy II	127

List of Tables

Table 4.1: The relation between the peak no load inrush current and	
the residual flux at fixed switching-on angle ($\alpha = 0$)5	57
Table 4.2: The relation between the peak no load inrush current and	
the switching-on angle at fixed residual core flux= 30 % $\phi_m 6$	50
Table 4.3: Relation between inductive load inrush current and its power	
factor at fixed switching on angle $\alpha = 0$ and at fixed residual	
core flux ($\phi_{res} = 30 \% \phi_m$)	0'
Table 4.4: Relation between inductive load inrush current and its	
impedance at fixed power factor, fixed switching on angle and	l
at fixed residual core flux	'2
Table 4.5: Inrush current for different pure resistive loads	'4
Table 4.6: Relation between capacitive load inrush current and its power	
factor at fixed switching on angle $\alpha = 0$ and at fixed residual	
core flux ($\phi_{res} = 30 \% \phi_m$)	3
Table 4.7: Relation between capacitive load inrush current and its	
impedance at fixed power factor, fixed switching on angle and	l
at fixed residual core flux	35
Table 4.8: load effect in recovery inrush current	94
Table 4.9: Fast acting reclosures results for inductive load)1
Table 4.10: Fast acting reclosures results for capacitive load	. 1
Table 4.11: The effect of fast acting reclosures	13

Table 4.12	Comparison between the maximum radial and axial forces	
	values in case of inrush current and short circuit current	117
Table 4.13	Main difference between magnetizing inrush current and s	short
	circuit Current	118
Table A.1	Single Phase power transformer Parameters	126
Table A.2	The transformer dimensional parameters of the model	
	transformer used in forces calculation	.127

List of Figures

Figure 2.1: Single phase power Transformer Equivalent Circuit	13
Figure 2.2: Section of low voltage and high voltage winding	13
Figure 2.3: Three-phase three-limb core transformer	16
Figure 2.4: B-H curve for ferromagnetic materials.	17
Figure 2.5: Exciting inrush current for no residual flux in the core	22
Figure 2.6: Exciting magnetizing inrush current for a core having a residual flux	.23
Figure.2.7: Generation of magnetizing inrush current	24
Figure 2.8: Magnetizing inrush current waveform for single phase transformer	25
Figure 2.9: Lay out of the transformer and its circuit breaker at the primary side	30
Figure 3.1: Electromechanical stress effects on windings caused by radial forces	38
Figure 3.2: Radial force resulting from transformer magnetizing inrush current	40
Figure 3.3: Variation of axial forces on the inner surface of the low voltage winding of single phase power transformer.	42
Figure 3.4: Typical effects of electromechanical stress on windings caused by axial Forces.	43
Figure 3.5: Curves of an axial compression for untapped transformer windings	44
Figure 3.6: Axial compression phenomenon on a transformer winding due to the magnetizing inrush current.	46
Figure 3.7: Windings axial forces caused by transformer magnetizing inrush current.	46
Figure 4.1: Equivalent circuit of the no load single phase transformer	49

Figure 4.2: magnetic flux density and the magnetic field intensity relationship for	
different materials	50
Figure 4.3: Single phase transformer mathematical model in no load condition	51
Figure 4.4: The instantaneous values of supply voltage (V_1) during transformer switching-on at no load for ($\alpha=0.0$ and $\phi_{res}=30~\%~\phi_m$)	52
Figure 4.5: The instantaneous values of primary current at no load for α 0.0 and $\phi_{res} = 30 \% \phi_m \left[i_{inrush} = 11 i_{rated} \right]$	52
Figure 4.6: The instantaneous values of effective flux (ϕ) during transformer switchi on at no load for $\alpha=0.0$ and $\phi_{res}=30$ % $\phi_m[\phi_{inrush}>2\phi_m]$	_
Figure 4.7: The primary current in case of switching on transformer at no load α =0 a with residual flux= 80 % $\phi_{\rm m}[i_{inrush}=20\ i_{rated}]$	
Figure 4.8: The primary current in case of switching on transformer at no load α =0 a with residual flux= 50 % $\phi_{\rm m}[i_{inrush}=15\ i_{rated}]$	
Figure 4.9: The primary current in case of switching on transformer at no load α =0 and with no residual flux[$i_{inrush} = 5 i_{rated}$]	55
Figure 4.10: The primary current in case of switching on transformer at no load α =0 and with residual flux= $-30 \% \phi_m [i_{inrush} = 1.8 i_{rated}]$	
Figure 4.11: The primary current in case of switching on transformer at no load α =0 and with residual flux= $-50 \% \phi_{\rm m} \ [i_{inrush} = 1.1 i_{rated}]$	
Figure 4.12: The primary current in case of switching on transformer at no load α =0 and with residual flux= $-80 \% \phi_{\rm m} [i_{inrush} = 0.55 i_{rated}]$. 56
Figure 4.13: The relation between the residual flux and inrush current	.57
Figure 4.14: The primary current in case of switching on transformer at no load α =0 and with residual flux= 30 % φ_m [i_{inrush} = 11 i_{rated}]	

Figure 4.15:	The primary current in case of switching on transformer at no load α =45	
	and with residual flux= 30 % $\varphi_{\rm m}[i_{inrush} = 5 i_{rated}]$	59
Figure 4.16:	The primary current in case of switching on transformer at no load α =90	
	and with residual flux= 30 % $\varphi_{\rm m}[i_{inrush}=0.6\ i_{rated}]$	59
Figure 4.17:	The primary current in case of switching on transformer at no load α =0	
	and with residual flux= $\phi_m[i_{inrush} = 24 i_{rated}]$	51
Figure 4.18:	The primary current in case of switching on transformer at no load α =90	
	and with residual flux= $-\phi_m[i_{inrush} = 0.1 \ i_{rated}]$	51
Figure 4.19:	The primary current in case of switching on transformer at no load α =90	
	and with no residual flux[$i_{inrush} = 0.3 i_{rated}$]	52
Figure 4.20:	Single phase transformer mathematical model in case of inductive load	
	condition	4
Figure 4.21:	The instantaneous values of supply voltage (V_1) at inductive load	
	switching-on (z=2.2 ohm and 0.1 p.f)),)
Figure 4.22:	The instantaneous values of primary current at inductive load switching- On (z=2.2 ohm and 0.1 p.f) [$i_{inrush} = 12.3 i_{rated}$]6	55
Ti		
Figure 4.23:	The instantaneous values of secondary current at inductive load switching on (z=2.2 ohm and 0.1 p.f)	
E' 4.24		
Figure 4.24:	The instantaneous values of effective flux [φ] at inductive load switching on (z=2.2 ohm and 0.1 p.f) [$\varphi_{inrush} > 2\varphi_{m}$]	_
Figure 4 25.	The instantaneous values of primary current at pure inductive load	
11guie 4.23.	switching-on (z=2.2 ohm and 0.0 p.f) [$i_{inrush} = 12.7 i_{rated}$]	7
Figure 4.26:	The instantaneous values of primary current at pure inductive load	
115010 1.20.	switching-on (z=3.2 ohm and 0.0 p.f) [$i_{inrush} = 12.1 i_{rated}$]	8
Figure 4.27:	The instantaneous values of primary current for a load impedance of 2.2	
	ohm and 0.5 p.f [$i_{inrush} = 11.6 i_{rated}$]	59