A Study of Serum Survivin in Patients with Systemic Onset Juvenile Idiopathic Arthritis

Thesis

Submitted For Partial Fulfillment of a Master Degree in Pediatrics

Submitted by

Aisha Galal Yehia Kamel

M.B.,B.Ch (2010), (Faculty of Medicine, Ain shams university)

Under Supervision of

Prof. Elham Mohammad Hossny

Professor of Pediatrics Head, pediatric Allergy and Immunology Unit Faculty of Medicine, Ain shams university

Prof. Sahar Samir Abd El Maksoud

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain Shams University

Dr. Hanan Mohamed Abd El Lateef

Lecturer of Pediatrics Pediatric Allergy and Immunology Unit Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Elham Mohammad Hossny** Professor of Pediatrics, Pediatric Allergy and Immunology Unit, Ain shams university for her keen guidance, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Sahar Samir Abd & Maksoud** Professor of Clinical and Chemical Pathology, Ain shams university for her valuable instructions and great assistance through the laboratory part of this work.

I am deeply thankful to **Dr. Hanan Mohamed Abd El Lateef** Lecturer of Pediatrics, Pediatric Allergy and Immunology
Unit, Ain shams university for her great help, active supervision
and guidance throughout every step of the work.

My cordial thanks are due to all my family members for their continuing support and endless love.

Last but not least my sincere gratitude and appreciation are due to those who kindly agreed to participate in this study.

﴿ رَبِّنَا إِثْنَا سَمِعْنَا مُنَادِيًا يُنَادِي لِلْإِيمَانِ أَنْ آمِنُوا بِرَبِّكُمْ فَآمَنًا رَبِّنَا فَاغُفِرْ لَنَا ذَنُوبَنَا وَكَفِّرْ عَنَّا سَيِّنَاتِنَا وَتَوَفَّنَا مَعَ الْأَبْرَارِ)

[سورة آل عمران: ١٩٣]

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Figures	iii
List of Tables	vi
Introduction	1
Aim of the Study	13
Review of Literature	
 Systemic Juvenile Idiopath 	ic Arthritis14
Survivin	44
Subjects and Methods	55
Results	63
Discussion	95
Recommendations	104
Summary	105
References	108
Arabic summary	

Tist of Abbreviations

ACR......American College of Rheumatology.

BIRBaculovirus IAP repeat domain.

BIRCBaculoviral IAP repeat-containing protein 2

BM.....Bone marrow.

CDCluster of differentiation.

CMV.....Cytomegalo virus.

CNS Central nervous system.

COX Cyclooxygenase.

CRPC reactive protein.

CTLA4Cytotoxic T- cell associated protein 4

CTLs.....Cytotoxic T lymphocytes.

CyACyclosporin A.

DMDiabetes milletus.

DMARDS......Disease modifying anti rheumatoid drugs.

ELISA.....Enzyme linked immunosorbent assay.

ERA.....Early rheumatoid arthritis.

ESRErythrocyte sedimentation rate.

EULAR.....European League Against Rheumatism.

HLH.....Hemophagocyticlymphohistiocytosis.

IAPInhibitors of apoptosis family of proteins.

IFNInterferon.

ILInterleukin.

ILAR......International League of Associations for Rheumatology.

JIAJuvenile idiopathic arthritis.

LCMVlymphocyte choriomeningitis virus.

MMP-3 Matrix metalloproteinase-3.

MTX.....Methotrexate.

Tist of Abbreviations (Cont ..)

Introduction and Aim of the Study

Th1T helper lymphocyte 1.

TMJTemporo mandibular joint.

TNFTumor necrosis factor.

TNFR...... Tumor necrosis factor receptor.

TRAILTumor necrosis factor related apoptosis inducing ligand.

VEGFVascular endothelial growth factor.

WT SURVIVIN.....Survivin Wild type.

XIAP.....X-linked inhibitors of apoptosis family of proteins.

🚇 Introduction and Aim of the Study

List of Figures

Fig. No.	Title Page No.	
Figure (1):	Basic principles of autoinflammation	19
Figure (2):	Cytokine signaling pathways	22
Figure (3):	Rash in SJIA	25
Figure (4):	Structure and function of survivin: BIR; baculovirus	
	inhibitor of apoptosis repeat	46
Figure (5):	Survivin role in mitosis	47
Figure (6):	Survivin as an antiapoptotic	
Figure (7):	Drugs targeting biogenesis and function of survivin	53
Figure (8):	Targeting survivin in chemotherapy	54
Figure (9):	Receiver-operating characteristic (ROC) curve for	
	discrimination between cases and controls using serum	
	survivin	77
Figure (10):	Box plot showing serum survivin in patients in	
	remission, relapse or MAS at baseline.	77
Figure (11):	Box plot showing baseline serum survivin in patients in	
	remission, relapse or MAS at 6 months	78
Figure (12):	Box plot showing baseline serum survivin in patients in	
	remission or relapse at 6 months.	78
Figure (13):	Receiver-operating characteristic (ROC) curve for	
	discrimination between cases in relapse or MAS and	
	those in remission at baseline using serum survivin.	79
Figure (14):	Receiver-operating characteristic (ROC) curve for	
	discrimination between cases with or without MAS at	
	baseline using serum survivin.	80
Figure (15):	Receiver-operating characteristic (ROC) curve for	
	prediction of relapse or MAS at 6 months using serum	
	survivin measured at baseline.	81
Figure (16):	Receiver-operating characteristic (ROC) curve for	
	prediction of MAS at 6 months using serum survivin	
	measured at baseline.	82
Figure (17):	Receiver-operating characteristic (ROC) curve for	
	prediction of relapse at 12 months using serum survivin	
	measured at baseline	83

☑ Introduction and Aim of the Study		
Figure (18):	Receiver-operating characteristic (ROC) curve for discrimination between cases in relapse or MAS and those in remission at 6 months using serum survivin.	84
	Tist of Figures cont	
Fig. No.	Title Page No.	
Figure (19):	Receiver-operating characteristic (ROC) curve for discrimination between cases with or without MAS at 6 months using serum survivin.	25
Figure (20):	Receiver-operating characteristic (ROC) curve for prediction of relapse at 12 months using serum survivin measured at 6 months.	
Figure (21):	Box plot showing serum survivin in patients in remission, relapse or MAS at 6 months	
Figure (22):	Box plot showing serum survivin measured at 6 months in patients in remission, relapse or MAS at 12 months.	
Figure (23):	Linear graph showing the correlation between baseline serum survivin and baseline ESR in the 22 patients,	
Figure (24):	(p=0.028)	
Figure (25):	Linear graph showing the correlation between baseline survivin and baseline ferritin/ESR ratio in 22 patients, $(p=0.229)$.	
Figure (26):	Linear graph showing the correlation between follow- up 6months serum survivin and follow-up 6 months	
Figure (27):	ESR in the 22 patients, $(p=0.107)$. Linear graph showing the correlation between follow- up 6months serum survivin and follow-up 6 months	
Figure (28):	ferritin in the 22 patients, $(p=0.015)$. Linear graph showing the correlation between follow-up 6 months serum survivin and follow-up 6 months	92
	ferritin / ESR ratio in the 22 patients, $(p=0.036)$.	92

Datroduction and Aim of the Study

Tist of Tables

Table No.	Title Page No.	
Table (1):	ILAR diagnostic criteria24	
Table (2):	Poor prognostic criteria for SJIA patients25	
Table (3):	(EULAR/ACR) diagnostic criteria for MAS	
	associated with sJIA31	
Table (4):	Biologic therapy used in JIA40	
Table (5):	ILAR criteria for diagnosis of SJIA55	
Table (6):	Jordan et al. criteria for Macrophage activation	
	syndrome diagnosis57	
Table (7):	SDAI score for assessment of SJIA activity	
	Priliminary diagnostic guidelines for MAS	
	complicating SJIA59	
Table (8):	Characteristics of the study population63	
Table (9):	Associated co-morbidities64	
	Lines of treatment	
Table (11):	The pattern of activities of the studied group in	
	relation to treatment. A1; relapse of the	
()	disease, A2; MAS, A3; remission	
	Treatment modalities of the studied patients	
Table (13):	Disease classification at presentation and at 6	
	months and 12 months	
	Pattern of presentation	
	Pattern of system affection	
	Ferritin at various follow-up times	
	Ferritin/ESR ratio at various follow-up times	
	ESR at various follow-up times	
Table (19):	Survivin assay in cases at presentation and at 6	
Table (90).	months	
	Comparison of survivin in cases and controls	
1 abie (21):	classification at baseline, 6 months and 12	
	TC	
	monuns	

Datroduction and Aim of the Study

List of Tables cont...

Table No.	Title	Page No.
Table (22):	Relation between survivin measured at 6 months and disease classification at 6 months and 12	
	months.	87
Table (23):	Correlation between serum survivin	and other
	quantitative variables in cases	95

Introduction

Juvenile idiopathic arthritis (JIA) is the most common inflammatory rheumatic disease in childhood, affecting one in 1000 children (*Duurland and Wedderburn*, 2014). JIA is characterized by severe joint inflammation in one or more joints, which persists for at least six weeks, with disease onset before the age of 16 years. This heterogeneous group of diseases can be divided into several subtypes on the basis of clinical symptoms, medical history, and abnormalities in laboratory measures (*Ravelli and Martini*, 2007).

Approximately 10% of children with systemic JIA develop overt clinical features of macrophage activation syndrome (MAS), a life-threatening condition characterized by fever, organomegaly, cytopenias, hyperferritinemia, hypertriglyceridemia, hypofibrinogenemia, and coagulopathy, among other findings (*Martini, 2012*). The mortality rate for children hospitalized with systemic JIA and MAS is estimated to be as high as 6%, but may even be higher based on estimates from case series (*Bennetti et al., 2012*).

NK cells and cytotoxic T lymphocytes (CTLs) cells may be directly involved in induction of apoptosis of activated macrophages and T cells during the contraction

Introduction and Aim of the Study

stage of the immune response (*Kagi et al., 1999*). Cytotoxic cell dysfunction leads to persistent expansion of T cells and macrophages and escalating production of proinflammatory cytokines explaining largely the clinical findings during the acute phase of MAS (*Grom and Mellins, 2010*).

Rheumatoid arthritis (RA) is characterized at the synovial lining hyperplasia, angiogensis, and mononuclear cell infiltrates in which there may be an imbalance between growth and death of fibFibroblastssonlast-like synoviocytes (Fan et al., 2010). A failure of apoptotic pathways may explain these pathological changes in RA synovial tissues (Smith et al., 2010).

Survivin is known as an inhibitor of apoptosis and a positive regulator of cell division (*Andersson et al., 2012*). It also plays an important role in the hyperplastic growth of tissues and tumors (*Ahn et al., 2010*).

The uncontrolled spread of destructive joint inflammation in RA resembling malignancy together with the strong correlation between inflammation and predisposition for cancer (Svensson et al., 2010) gives survivin (a proto-oncogene) a predictor value for joint destruction in patients with rheumatoid arthritis (Andersson et al., 2012).

Introduction and Aim of the Study

High survivin levels are associated with severe radiographic damage at the start of treatment and a poor response to infliximab and based on this survivin measurement might be considered an additional tool for aiding the selection and follow-up of antirheumatic treatment (Isgren et al., 2012)

Aim of the Study

This study aims to evaluate serum level of survivin as an anti-apoptosis marker in relation to disease activity, degree of joint destruction, and evolution of macrophage activation syndrome (MAS) in patients with systemic onset juvenile idiopathic arthritis (SJIA). The ultimate objective is to assess the prognostic gain from adding this marker to the work up of this disease.

Systemic Juvenile Idiopathic Arthritis

Definition and Epidemiology:

Systemic juvenile idiopathic arthritis (sJIA, formerly called Still's disease or systemic juvenile rheumatoid arthritis) is officially classified as a heterogeneous form of arthritis in childhood. SJIA is a subset of JIA that includes patients with characteristic daily (quotidien) fever spiking to more than 39°C (102.2°F) for 2 weeks or greater in association with arthritis of 1 or more joints (*Petty et al.*, 2001).

SJIA accounts for approximately 10 to 20 % of all cases of JIA. It typically affects both sexes equally and may present in children as young as one year of age or younger. Patients with sJIA fall into the category of systemic arthritis in the 2004 when the International League of Associations for Rheumatology (ILAR) proposed classification of the childhood arthritides (*Nigrovic*, 2014).

JIA is the most common chronic rheumatic disease in childhood with an incidence of 1 in 1000. Up to 1/3 of children are reported to have active disease progressing into adulthood. Although systemic JIA (sJIA) accounts only 10-20 % of all types of JIA, it has the highest morbidity

compared with other JIA subtypes and contributes about two thirds of the total mortality rate in JIA (*Gurion*, 2012).

In Egypt, it has been found that the prevalence of JIA amongst 10–15 year old school children was equivalent to 3.3 per 1000. Many clinicians fail to recognize JIA and therefore these children do not make their way to medical care in large study centers, therefore underestimating the true prevalence (*Omar et al., 2013*).

complications Secondary (e.g. growth failure, osteoporosis, deformities, and loss function) of amyloidosis are the medical sequelae, but there are also serious developmental and social consequences. The medical treatment of patients who are at the more severe end of the disease spectrum is unsatisfactory; however, new therapies that might improve prognosis, such as autologous stem-cell transplantation and approaches for blocking interleukin-6 signaling are now widespread (*Robinson*, 2016).

This illness is a unique condition closer to the autoinflammatory family of diseases, with distinct manifestations and treatment responses that distinguish it from the other diseases categorized as JIA (*Prakken*, 2011).