

Neoadjuvant Management of Cancer Rectum

Essay

Submitted for partial fulfillment Of the M.S. Degree in Radiation Oncology and Nuclear Medicine

By

Reham Mohammed Faheim M.B; B.Ch

supervised by

Prof. Dr. Soheir Helmy Mahmoud

Prof. of Radiation Oncology and Nuclear Medicine Ain Shams University

Dr. Tarek Hussein Kamel

Ass. Prof. Of Radiation Oncology And Nuclear Medicine Ain Shams University

Dr. Hesham Ahmed Elghazaly

Lecturer Of Radiation Oncology And Nuclear Medicine Ain Shams University

Faculty of Medicine
Ain Shams University

العلاج الكيماوى والإشعاعى المستخدم قبل إجراء العملية الجراحية لسرطان المستقيم

رسالة مقدمة توطئه للحصول على درجة الماجستير في علاج الأورام بالإشعاع والطب النووي

مقدمه من

الطبيبه / ريهام محمد فهيم

تحت إشراف

الأستاذة الدكتورة / سهير حلمي محمود

أستاذ علاج الأورام بالإشعاع والطب النووى كلية الطب – جامعة عين شمس

الدكتور / طارق حسين كامل

أستاذ مساعد علاج الأورام بالإشعاع والطب النووى كلية الطب – جامعة عين شمس

الدكتور / هشام احمد الغزالي

مدرس علاج الأورام بالإشعاع والطب النووى كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠٠٧

ACKNOWLEDGEMENT

Before all, Thanks to GOD.

I would like to express my profound gratitude and great respect to my **Professor Dr. Soheir Helmy Mahmoud**, Prof. of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University. It was an honor to me to carry out this work under her continuous guidance and expert supervision.

I am greatly indebted to **Dr. Tarek Hussein Kamel**, Assistant Prof. of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his unlimited help, precise instructions and kind encouragement during the preparation of this essay.

To **Dr. Hesham Ahmed Elghazaly**, lecturer of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University. I owe what words can't express for his meticulous revision and sincere cooperation.

SPECIAL THANKS TO MY HUSBAND & MY FAMILY

Introduction

Estimated new cases of rectal cancer in radiation oncology and nuclear medicine department of Ain Shams University in Y··V: YA new cases. Estimated new cases of rectal cancer in the United States In Y··V: £1,£Y· (Linda et al, Y··V). Relative frequency Incidence of rectal cancer in radiation oncology and nuclear medicine department of Ain Shams University in Y··V: Y %.

The incidence is slightly higher in males than in females (*Elizabeth et al.*, $(V \cdot V)$). Incidence peaks in the seventh decade; however, cases have been reported in young children (*Elizabeth et al.*, $(V \cdot V)$).

Adenocarcinoma is the most common type of cancer rectum. It accounts for over $9 \cdot - 9 \circ \%$ of cancers originating in the rectum. Other types of cancer including carcinoid $(\cdot, 1\%)$, lymphoma (1, 1%), and sarcoma $(\cdot, 1\%)$ also originate in the rectum, but are not referred to as rectal cancer. Very rare cases of squamous cell carcinoma of the rectum have been reported (*Harvey*, $1 \cdot 1 \cdot 2$).

The exact cause of rectal cancer is unknown, but rectal cancer appears to be multifactorial in origin and studies showing concentration in areas of higher economic development suggest a relationship to diet (excess saturated animal fat). Causes of rectal cancer are probably environmental in the sporadic cases ($\land \cdot \land$), and genetic in the hereditary – predisposed ($\land \cdot \land$) cases, other factors include: other diseases of the digestive tract and history of ulcerative colitis (*Will et al.*, $\land \cdot \land \cdot \land$).

Germline mutations responsible for inherited conditions that predispose to the development of rectal cancers, such as the *APC* gene in familial adenomatous polyposis coli (FAP) and the mismatch repair genes in hereditary non-polyposis colon cancer (HNPCC). But FAP and HNPCC account for only about °% of all colorectal cancers, and the identification of genetic polymorphisms that predispose to the development of colorectal cancer may be more important in the population as a whole (**Park and Kim**, **••).

Molecular techniques have been employed in the diagnosis of colorectal cancer, and mutated copies of the APC, K-ras and $P^{\circ r}$ genes have been detected in the stools of malignancies patients with as have DNA sequences demonstrating microsatellite instability (Lawes et al., "..."). Rectal cancers expressing the mutant Por protein tend to be resistant to radiotherapy, whilst those expressing the p^{γ} gene seem more sensitive to its effects. Cancers that express high levels of the enzyme thymidylate synthase show resistance to o-fluorouracil whilst those demonstrating microsatellite instability seem to respond well to o-fluorouracil. Cancers with mutations of the K-ras, DCC and $p \circ r$ genes tend to have a poor prognosis (Devita et al., Y...).

Cyclooxygenase-Y (COX-Y) expression correlates with size and invasiveness of colorectal carcinomas. When its expression levels increase, the size and the depth of tumor invasion increase. COX-Y expression in primary lesions of colorectal cancer is closely related to the occurrence of metachronous liver metastasis and patient survival outcome (*Takeyoshi*; et al, Y···).

Colorectal cancer patients with EGFR-negative tumors have the potential to respond to cetuximab-based therapies. EGFR analysis by current IHC techniques does not seem to have predictive value and selection or exclusion of patients for cetuximab therapy on the basis of currently available EGFR IHC does not seem warranted (*KiYoung et al.*, **...**).

All patients should undergo a complete history, including a family history and assessment of risk factors for the development of rectal cancer. Many rectal cancers produce no symptoms and are discovered during digital or proctoscopic screening examinations. Bleeding per rectum is the most common symptom of rectal cancer and occurs in 7.% of patients. Change in bowel habits present in $\xi \gamma$ of patients. Often, it occurs in the form of diarrhea, particularly if the tumor has a large villous component. Partial large-bowel obstruction may cause colicky abdominal pain and bloating and is present in Y.% of cases. Also unexplained weight loss and malaise. Physical examination is performed including digital rectal examination, routine laboratory studies, CEA, (CA) \9-⁹, fecal occult blood test and imaging Studies, such as, double contrast barium enema, proctosigmoidoscopy, endorectal ultrasound and metastatic workup (*Elizabeth et al.*, * · · *).

Staging is an important part of diagnosis, treatment planning, and predictions of long term survival. Various

staging systems have been used for rectal cancer, the most popular being that proposed by Dukes. It is based on the degree of bowel wall penetration and lymph node metastases. The Dukes system does not include the degree of bowel wall penetration in node-positive patients. Surgeons and oncologists are increasingly using the unified TNM stage system of the UICC (Union International Contre le Cancer) and AJCC (American Joint Committee on Cancer), as it separately identifies each component of a tumour's risk; tumour stage (T), node stage (N) and metastasis (M) (*Elizabeth et al.*, **.***Y).

Preoperative radiation therapy among the potential advantages of the preoperative approach are downstaging and downsizing effects that possibly enhance curative surgery in locally advanced, e.g. T[£]-rectal cancer, and sphincter preservation in low-lying rectal cancer. Moreover, neoadjuvant therapy may be advantageous also in resectable rectal cancer as sterilization of the tumor cells prior to surgery may reduce the risk of tumor cell spillage during surgery. Technically, there are two approaches to preoperative radiation therapy. The first one is an intensive short-course radiation, for one week & the second includes of to the weeks of conventional fractionation (**Rolf**, to the potential advantageous about the properties of the preoperative radiation and t

Neoadjuvant therapy used in locally advanced rectal cancer is neoadjuvant CRT that consisted of °·, ½ Gy in ^{YA} fractions to the tumor and pelvic lymph nodes and concomitant °-FU continuous infusion during weeks ^Y and °. All patients also received ½ additional cycles of °-FU adjuvant chemotherapy and a °, ½ Gy small-volume boost. Neoadjuvant XELOX-RT °·, ½ Gy consists

of preoperative radiation therapy with concomitant Xeloda and Eloxatin (*Charles et al*, $r \cdot r$).

Pathologic complete response rates by using a neoadjuvant approach range from % to %. Complete clinical response after treatment range from % to % and has been judged by combinations of examination, proctoscopy, CT-scan, endorectal ultrasound, and biopsy(*Mark et al.*, %.).

Enhancing Sphincter preservation another major goal of neoadjuvant therapy is the conversion of a low-lying tumor, that was declared by the surgeon to require an abdominoperineal resection (APR), into a lesion amenable to sphincter-preserving procedures (SPP). Technically, two surgical approaches have been used after preoperative therapy: local excision and a low anterior resection with or without a coloanal anastomosis (*Rolf*, **·***).

THE CONTENTS

	Page
Introduction	I-V
Anatomy of the rectum	,
Epidemiology of cancer rectum	1.
Pathology of cancer rectum	1 1"
Molecular Pathology	۲1
Diagnosis of rectal cancer	۳۱
Staging of rectal cancer	٤٣
Prognosis of cancer rectum	EN
The rational principles of neo-adjuvant therapy for rectal cancer	or
Neoadjuvant therapy of cancer rectum	01
Surgery	19
Dealing with Side Effects of Treatment	1.7
Summary	1 • 9
References	115

Arabic summary	

THE ABBREVIATIONS

AJCC	American Joint Committee on Cancer
AP	anterioposterior
APC	adenomatous polyposis coli
APR	abdominoperineal resection
ASTRO	American Society of Therapeutic Radiology and
	Oncology
BIT	bi-ischial tuberosity
BMI	body mass index
CA	cancer antigen
CAA	colonanal anastomosis
CEA	carcinoembryonic antigen
cm	Centimeter
COX-۲	Cyclooxygenase- ۲
CRT	chemoradiation
C-T	Computed tomography
DFS	disease free survival
DRE	digital ractal arguination
	digital rectal examination
DSC	distance of sacrococcyx
EBRT	external beam radiation therapy
EGFR	the epidermal growth factor receptor

EORTC	European Organisation for Research and Treatment
	of Cancer
ERUS	Endorectal ultrasound
FOBT	fecal occult blood test
GI	gastrointestinal
HART	High accelerated RT
HNPCC	hereditary nonpolyposis colorectal cancer
IBD	inflammatory bowel disease
IHC	Immunohistochemical
IORT	Intraopertive RT
LAR	low anterior resection
MIN	microsatellite instability
MMP	metalloproteinases
171171	metamoprotemases
MMR	mismatch repair
MRI	Magnetic resonance imaging
NCI	National Cancer Institute
pCR	pathologic complete response
PET	positron emission tomography
RT	radiotherapy
R١	Positive resection margin
	1

R۲	Direct visualization and irradiation of the persistent
	tumour
SCRCs	sporadic colorectal cancers
SIPS	inferior pubis to sacrococcyx
SPP	sphincter preservation procedure
SUPS	upper pubis to the sacrococcyx
TME	Total mesorectal excision
TP	thymidine phosphorylase
TPR	total pathological remissions
TS	thymidylate synthase
U.S.A	the United States
UC	ulcerative colitis
UICC	Union International Contre le Cancer
UICC	the International Union against Cancer
UPC	upper pubis to coccyx
S.N. £	the fourth sacral nerve
۳D	three-dimensionally
∘FU	o-fluorouracil

THE FIGURES

Figure		Page
1	Anal canal	٣
۲	External anal sphincter	٤
٣	Rectum relations	7
٤	Rectum vessels and lymphatic.	٨
٥	Immunohistochemical staining of COX-۲. (A) _'\'; (B) _o\'. COX-۲ was strongly expressed in cancer cells	Υ <i>٤</i>
fig. A, B	Radiation Fields	V