

Ain Shams University Faculty of Engineering Department of Engineering Physics and Mathematics

APPLICATION OF OPTIMIZATION TECHNIQUES ON ECONOMIC DISPATCH

A Thesis Submitted
For The Degree of Masters of Science in Engineering
Mathematics

Prepared by:

Eng. Fatma Sayed Mahmoud Sayed Moustafa

Under the supervision of

Prof. Dr. Niveen Mohamed Khalil Badra

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Prof. Dr. Almoataz Youssef Abdelaziz

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Dr. Ahmed Mohamed Ibrahim El-Rafei

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Ain Shams University Faculty of Engineering Department of Engineering Physics and Mathematics

APPLICATION OF OPTIMIZATION TECHNIQUES ON ECONOMIC DISPATCH

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the M.Sc. degree in Engineering Mathematics

Prepared by:

Eng. Fatma Sayed Mahmoud Sayed Moustafa

Bachelor in Electrical Power Engineering Department of Electrical Power and Machines Ain shams University

Examination Committee

Title, Name and Affiliation

Signature

Prof. Dr. Mahdi Mohamed El-arini

Department of Electrical Power and Machines Faculty of Engineering, Zagazig University

Prof. Dr. Reda Amin Elbarkouky

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Prof. Dr. Niveen Mohamed Khalil Badra

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Prof. Dr. Almoataz Youssef Abdelaziz

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Date: / /

Ain Shams University Faculty of Engineering Department of Engineering Physics and Mathematics

APPLICATION OF OPTIMIZATION TECHNIQUES ON ECONOMIC DISPATCH

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the M.Sc. degree in Engineering Mathematics

Prepared by:

Eng. Fatma Sayed Mahmoud Sayed Moustafa

Bachelor in Electrical Power Engineering Department of Electrical Power and Machines Ain shams University

Supervision Committee

Title, Name and Affiliation

Signature

Prof. Dr. Niveen Mohamed Khalil Badra

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Prof. Dr. Almoataz Youssef Abdelaziz

Department of Electrical Power and Machines Faculty of Engineering, Ain Shams University

Dr. Ahmed Mohamed Ibrahim El-Rafei

Department of Engineering Physics and Mathematics Faculty of Engineering, Ain Shams University

Date: / /

TABLE OF CONTENTS

Abstra	act	VII	
Ackno	Acknowledgment		
List of	f Tables	IX	
List of	f Figures	XIII	
List of	f Symbols	XV	
List of	f Abbreviations	XVII	
CHAI	PTER 1		
INTR	ODUCTION	1	
1.1	Importance and objective of Economic Load Dispatch problem	1	
1.2	Solution of Economic Load Dispatch problem	1	
1.3	Motivation and contribution	2	
1.4	Organization of thesis	3	
CHAI	PTER 2		
OPTIMIZATION TECHNIQUES			
2.1	Problem formulation	4	
2.2	Constraint handling	5	

	2.2.1	Penalty factor method	5
	2.2.2	Lagrange multipliers	6
	2.2.3	Kuhn Tucker conditions	7
2.3	Conve	ntional optimization methods	8
	2.3.1	Newton Raphson method	9
	2.3.2	Interior point method	9
	2.3.3	Lambda iteration for economic load dispatch problems	10
	2.3.4	Disadvantages of conventional methods	13
2.4	Metaho	euristic optimization methods	13
	2.4.1	Particle swarm optimization algorithm	14
	2.4.2	Artificial bee colony algorithm	15
	2.4.3	Ant colony optimization algorithm	15
	2.4.4	Cuckoo search algorithm	16
	2.4.5	Shuffled frog leaping algorithm	17
	2.4.6	Bat algorithm	17
	2.4.7	Grey wolf optimization algorithm	18
	2.4.8	Bacteria foraging optimization algorithm	19
	2.4.9	Firefly algorithm	19
	2.4.10	Advantages and disadvantages of swarm-based metaheuristics	20

2.5	Choos	sing an appropriate optimization algorithm	22
	2.5.1	Comparison of Quasi-Newton method and Firefly algorithm	22
	2.5.2	Comparison of Interior point method and Firefly algorithm	23
CHA	PTER :	3	
ECO	NOMIC	C LOAD DISPATCH	25
3.1	Introd	uction	25
3.2	Econo	omic Load dispatch as an optimization problem	25
3.3	Proble	em formulation and its variants	26
	3.3.1	Objective function	26
	3.3.2	Constraints	28
3.4		entional mathematical based algorithms to solve the mic load dispatch problem	32
3.5	1 1		33
	3.5.1	Solution of economic load dispatch by particle swarm optimization algorithm	33
	3.5.2	Solution of economic load dispatch by artificial bee colony algorithm	34
	3.5.3	Solution of economic load dispatch by ant colony optimization algorithm	35
	3.5.4	Solution of economic load dispatch by cuckoo search algorithm	36
	3.5.5	Solution of economic load dispatch by shuffled frog leaping algorithm	37
	3.5.6	Solution of economic load dispatch by bat algorithm	37

	3.5.7	Solution of economic load dispatch by grey wolf optimization algorithm	38
	3.5.8	Solution of economic load dispatch by bacteria foraging optimization algorithm	38
	3.5.9		38
CHAI	PTER 4	4	
FIRE	FLY A	LGORITHM AND ITS VARIANTS	40
4.1	Firefly	y Algorithm	40
	4.1.1	Concept of firefly algorithm	40
	4.1.2	Factors affecting algorithm	41
	4.1.3	Pseudo code	42
	4.1.4	Flowchart	43
	4.1.5	Constraint handling for firefly algorithm (Penalty method)	44
4.2	Advar	nces and modifications of firefly algorithm	44
	4.2.1	Advantages and disadvantages of firefly algorithm	44
	4.2.2	Why modify the firefly algorithm?	45
4.3	Variar	nts of firefly used	46
	4.3.1	Modified firefly algorithm	46
	4.3.2	Pseudo code	50
	4.3.3	Flowchart of modified firefly algorithm	51

	4.3.4	Variable step size firefly algorithm	52
	4.3.5	Memetic firefly algorithm	53
CHAI	PTER :	5	
RESU	LTS A	ND DISCUSSION	54
5.1	Applic	eation on mathematical and engineering design problems	55
	5.1.1	Mathematical problem	55
	5.1.2	Engineering problem	56
5.2	Applic	eation on 3 bus system economic load dispatch problem	57
	5.2.1	Lossless case	58
	5.2.2	Loss included	61
5.3		eation on 30 bus 30 bus 6 units system economic load ch problem	66
	5.3.1	Lossless case	67
	5.3.2	Loss included	71
CHAI	PTER (6	
CONC	CLUSIO	ON AND FUTURE WORK	76
6.1	Conch	usion	76
6.2	Future	work	77

REFERENCES	79
Appendix 1	92
Appendix 2	93

ABSTRACT

The design and performance of electric power systems has attracted the attention of many researchers. With the increase in the price of operation and the limitation of generation resources, effort is put in improving efficiency of generation and operation of power plants. Economic load dispatch is crucial since it is required to schedule committed generating units so as to meet load demand at minimum operating cost satisfying all unit and system equality and inequality constraints and limitations imposed on the generating units during operation.

To solve the economic load dispatch problem, traditional and intelligent techniques were applied. The traditional techniques are simple and fast, however, they have the disadvantage of converging to local optimum solutions rather than global optimum solutions. Researchers have shown interest in utilizing metaheuristic methods to solve complex optimization problems in real life applications. Metaheuristic methods solve the most complex optimization problems rapidly and global optimum solutions are most probably guaranteed.

Firefly algorithm is suitable for solving the economic load dispatch problem. Compared to other techniques, firefly algorithm has a high convergence speed and can deal with multimodal and non-linear optimization problems efficiently. Yet, it could get trapped in local optima, its parameters aren't dynamic and it doesn't memorize previously superior solutions.

In this study, three recent modifications of the firefly algorithm: modified firefly algorithm, memetic firefly algorithm, and variable step size firefly algorithm were applied to solve the economic load dispatch problem. Their performance were evaluated and compared with each other and to the original firefly algorithm. Numerical simulations were implemented and show the efficiency of the modified firefly algorithm over the other approaches.

ACKNOWLEDGEMENT

First of all, I am grateful for Allah for all the blessings and bounties He has bestowed on me.

I would like to express my sincere thanks and gratitude to my supervisors Prof. Niveen Badra, Prof. Almoataz Abdelaziz and Dr. Ahmed El-rafei for their guidance and continuous support throughout the dissertation work. Without their motivation and counsel, this thesis wouldn't have been possible.

I am thankful for the help and advice given by Dr. Mahmoud Othman, Dr. Osama Shahin, Eng. Rana Elnahal, Eng. Dina Said and Eng. Nayera Sameh in regards of algorithms, MATLAB and programming.

I am grateful for my family's encouragement and love: my mother Nadia and my three brothers Ahmed, Hassan and Omar and my sister in law Armina.

I would like to thank my supportive friends who can't wait to attend my master's defense: Lobna Said, Samar Shukry, Nada Selim, Nada Yahya, Youssef Osama, Khalid Enany, Ahmed Mahmoud, Nora Magdy, Ahmed Emad, Khalid Anwer and Noha Mamdouh.

Finally, my father Sayed, you have always encouraged me to follow my dreams and succeed in my studies and life. I owe it all to you and I wish you were with me but I know that you are proud of me.

LIST OF TABLES

Table 2.1	Table showing the advantages and disadvantages of	20 - 21
	the swarm based metaheuristic techniques	20 – 21
Table 2.2	Comparison of solution of Beale function obtained by	
	Quasi-Newton method for different initial values with	22
	the firefly algorithm	
Table 2.3	Comparison of solution of Bohachevsky1 function	
	obtained by Quasi-Newton method for different initial	23
	values with the firefly algorithm	
Table 2.4	Solution of Rosenbrock function obtained by interior	24
	point method and firefly algorithm	24
Table 5.1	Parameters used in the implementations	54
Table 5.2	Reliability analysis for twenty independent runs for	55
	mathematical problem	33
Table 5.3	Best solution for mathematical problem	55
Table 5.4	Reliability analysis for 20 runs for engineering	56
	problem	30
Table 5.5	Best solution for engineering problem	56
Table 5.6	Solution of 3 bus lossless case for power demand =	58
	600MW	30
Table 5.7	Solution of 3 bus lossless case for power demand =	58
	700MW	30
Table 5.8	Solution of 3 bus lossless case for power demand =	59
	800MW	39
Table 5.9	Comparing cost of 3 bus lossless case for different	59

	power demands obtained by the genetic and firefly	
	algorithm	
Table 5.10	Reliability analysis of 3 bus lossless case for power	59
	demand = 600MW	39
Table 5.11	Reliability analysis of 3 bus lossless case for power	59
	demand = 700MW	39
Table 5.12	Reliability analysis of 3 bus lossless case for power	60
	demand = 800MW	00
Table 5.13	Solution of 3 bus loss included case for power demand	62
	= 600MW	02
Table 5.14	Solution of 3 bus loss included case for power demand	62
	= 700MW	02
Table 5.15	Solution of 3 bus loss included case for power demand	62
	= 800MW	02
Table 5.16	Comparing cost of 3 bus loss included case for	
	different power demands obtained by the particle	63
	swarm optimization and firefly algorithms	
Table 5.17	Comparing power loss of 3 bus loss included case for	
	different power demands obtained by the particle	63
	swarm optimization and firefly algorithms	
Table 5.18	Reliability analysis of 3 bus loss included case for	63
	power demand = $600MW$	03
Table 5.19	Reliability analysis of 3 bus loss included case for	63
	power demand = $700MW$	03
Table 5.20	Reliability analysis of 3 bus loss included case for	64
	power demand = $800MW$	υ4

Table 5.21	Solution of 30 bus 6 units lossless case for power	67
	demand = 600MW	07
Table 5.22	Solution of 30 bus 6 units lossless case for power	60
	demand = 700MW	68
Table 5.23	Solution of 30 bus 6 units lossless case for power	6 0
	demand = 800MW	68
Table 5.24	Reliability analysis of 30 bus 6 units lossless case for	6 0
	power demand = $600MW$	68
Table 5.25	Reliability analysis of 6 units lossless case for power	60
	demand = 700MW	69
Table 5.26	Reliability analysis of 6 units lossless case for power	60
	demand = 800MW	69
Table 5.27	Solution of 6 units loss included case for power	71
	demand = 600MW	71
Table 5.28	Solution of 30 bus 6 units loss included case for	72
	power demand = $700MW$	72
Table 5.29	Solution of 30 bus 6 units loss included case for	70
	power demand = $800MW$	72
Table 5.30	Comparing cost of 30 bus 6 units loss included case	
	for different power demands obtained by the lambda	72
	iteration method, particle swarm optimization, and	72
	firefly algorithms	
Table 5.31	Comparing power loss of 30 bus 6 units loss included	
	case for different power demands obtained by the	72
	lambda iteration method, particle swarm optimization,	73
	and firefly algorithms	

Table 5.32	Reliability analysis of 30 bus 6 units loss included	73
	case for power demand = $600MW$	13
Table 5.33	Reliability analysis of 30 bus 6 units loss included	73
	case for power demand = $700MW$	13
Table 5.34	Reliability analysis of 30 bus 6 units loss included	73
	case for power demand $= 800MW$	13
A1.	Parameters of 3 bus system and loss coefficient B	92
A2.	Parameters of 30 bus 6 units system and loss	02
	coefficient B	93