Microtensile Bond Strength of Resin Bonded Translucent Zirconia Using Different Surface Treatments

THESIS

Submitted to the faculty of oral &dental medicine

Cairo University

In partial fulfillment of the requirements

For The Master Degree

(Fixed Prosthodontics)

By

Rasmia Mamdouh Ali Salem
B.D.S 2007
Cairo University

Faculty of oral & dental medicine

Cairo University

2015

SUPERVISORS

DR

GIHAN ABD EL HADY EL NAGGAR

Professor of fixed prosthodontics

Faculty of oral and dental medicine

Cairo University

DR

MOUSTAFA NABIL ABOUSHELIB

Professor of Biomaterials

Faculty of oral and dental medicine

Alexandria University

Judgment and discussion committee

Dr. Ashraf Hussein Sheriff

Professor of fixed prosthodontics

Faculty of oral and dental medicine

Cairo University

Dr. Tamer Abd Elrahim Hamza

Ass. Professor,

Acting head of fixed prosthodontics department

Faculty of oral and dental medicine

Al Azhar University

Dr. Gihan Abd El hady El naggar

Professor of fixed prosthodontics

Faculty of oral and dental medicine

Cairo University

Dr. Moustafa Nabil Aboushelib

Professor of Biomaterials

Faculty of oral and dental medicine

Alexandria University

LIST OF CONTENTS

List of tables	
List of figures	II
Introduction	1
Review of literature	3
Aim of the study	36
Hypothesis	37
Materials and methods	38
Results	71
Discussion	86
Summary	98
Conclusion	100
Reference	101
الملخص العربي	113

LIST OF TABLES

Table no	Title	Page
		No
1	The materials used in the present study	39
2	Composition of RelyX ultimate clicker cement	41
3	Sample grouping of zirconia bars	47
4	The composition of SIE agent	49
5	Sample grouping of microbars	63
6	Results of statistical analysis of the zirconia Surface	71
	roughness as affected by different surface treatment	71
7	Statistical analysis of the Effect of surface treatments on	
	zirconia \resin microtensile bond strength	74
8	Results of the statistical analysis of the effect of 3 months	
	water storage on zirconia\ resin microtensile bond strength	76

List of figures

Figure no	Title	Page no
1	Incoris TZI block	42
2	Universal composite resin Z350XT	42
3	Rely X ultimate resin cement	43
4	Cutting of zirconia block	45
5	Incoris TZI bars after cutting	46
6	Infire HTC furnace	46
7	Sandblasting machine	48
8	Zirconia bars coated by SIE	50
9	A computer programmed electrical induction furnace	51
10	The selective infiltrated etched zirconia bars	51
11	5% hydrofluoric acid solution	52
12	Ultrasonic bath.	52
13	Compressor	54
14	Spray nozzle	54
15	Composite bars	55
16	Composite bars stored in water at room temperature	56
17	Vertical micrometer to measure the cement film	
	thickness	57
18	The zirconia bar after cementation to composite bars	58
19	Microcut motor	59
20	Attachment holding zirconia bar during	
	cutting	59
21	Cutting of zirconia bar by diamond disc	60

22	A slice of microbars before separation	60
23	Micro motor to separate the microbars	61
24	The microbars after separation	61
25	The Stereomicroscope for testing the microbars	62
26	EDEX histogram of Selective infiltrated etched zirconia	
	group after dissolving the glass element	65
27	The profilometer	66
28	Scanning electron microscope	66
29	Gold coating machine	67
30	Gold coated zirconia bars	67
31	Stainless steel attachment unit	69
32	Diagram of the Stainless steel attachment	69
33	Universal testing machine	70
34	The incubator	70
35	Histogram of results of statistical analysis of the zirconia	
	Surface roughness as affected by different surface	
	treatments	72
36	Histogram of the statistical analysis of the Effect of	
	surface treatment on zirconia \resin microtensile bond	
	strength	74
37	Histogram of results of the statistical analysis of the	
	effect of 3 months water storage on zirconia\ resin	
	microtensile bond strength	76
38	SEM micrograph of APS 50 µm group	77

39	SEM micrograph of LPS 30 µm group	78
40	SEM micrograph of SIE group	79
41	SEM micrograph of FS group	80
42	SEM image (x10000) of average pressure sandblasting zirconia\resin interface	81
43	SEM image (x12.000) of low pressure sandblasting zirconia \resin interface.	82
44	SEM image (x1000) of selective infiltrated etched zirconia\resin interface.	83
45	SEM image (x20000) of selective infiltrated etched zirconia\resin interface.	84
46	SEM image of (x750) of fusion sputtered zirconia\ resin interface	85

INTRODUCTION

The increase of patient's desire for esthetics has resulted in the use of all – ceramic restorations in the posterior region as well as the anterior region. The acceptance of all ceramic restorations has increased because of their inherent esthetics, excellent biocompatibility, and improved physical properties. Today's, many framework structures for prosthetic restorations are fabricated using CAD/CAM procedures which means that a major part in the working sequence is carried out by industrial machines. On the other hand, it is possible to achieve more accurate design than hand drawn design, reduce the human errors and gain higher productivity which is particularly important for ceramic materials.

Zirconia based ceramics have become one of the most popular types of all ceramic restorations available today. Zirconia based ceramics utilize CAD /CAM technology for fabrication of copings for crowns, bridges and implant abutments. To gain the strength benefits of the core material, the core—veneer bond strength must be of adequate strength and toughness to transmit functional stresses from the esthetic veneer to the underlying framework.

The zirconia-veneer bond strength was inferior compared to other all-ceramic systems, which suggests that the layered zirconia frameworks are more susceptible to delamination and chipping under function, so the development of translucent zirconia will allow the use of monolithic restorations thereby making crowns with high aesthetic, translucency and at the same time avoid delamination of the veneering ceramics.

Different cement types (conventional cements, glass ionomer cements and adhesive resin cements) have been proposed for luting zirconia.

Establishing a strong and stable bond with zirconia has proven to be difficult, as the material is acid resistant and does not respond to the common etching and silanation procedures used with other glass containing ceramic materials. Other alternative techniques have been used to establish rough surface of zirconia such as, sandblasting, silica coating, selective infiltration etching, laser induced roughening, heat treatment and hot etching.

No agreement has been found in the literature regarding the best surface treatment to be used for enhancing the bond strength of zirconia to cement, that's why this study was carried out to investigate new techniques of surface treatment for enhancing zirconia / resin bond strength.

REVIEW OF LITERATURE

In the search for the ultimate esthetic restorative materials, many new all-ceramic systems have been introduced to the market; the use of all-ceramic materials is increasing at almost an exponential rate. Ceramics offer the potential for excellent esthetics, biocompatibility and long-term stability. (1, 2)

All ceramic materials are classified according to composition into: silica –based (feldspathic porcelain, leucite-reinforced ceramics, and lithium disilicate ceramics) and non- silica-based (Y-TZP zirconia or alumina). (3,4)

Feldspathic Porcelain

Feldspathic porcelain is a silica-based ceramic available in sintered, pressed and milled forms. Feldspathic porcelain is composed of Leucite (potassium aluminosilicate) and glass. It has low to medium values of flexural strength (65-120 MPa). Esthetics is the number one priority for ceramic restorations and feldspathic porcelain is arguably the most esthetic porcelain, since it has superior translucency. It is technique sensitive and due to its low strength, it is not recommended for bruxers or in high wear areas and it is rarely used for full coverage. (3)

Leucite-reinforced Ceramics:

Leucite-reinforced ceramic is a silica-based ceramic available in sintered, pressed and milled forms. It is composed of Leucite-reinforced ceramics and contains up to 45% by volume of leucite. Leucite is a reinforcing phase that results in medium values of flexural strength (120-140 MPa) and compressive strength. Leucite

crystals can act as crack deflectors and contribute to increase resistance to crack propagation. Leucite-reinforced ceramics are recommended when esthetics is the primary objective. These ceramics are less technique sensitive than feldspathic porcelains. They are not recommended for posterior areas and it is rarely used for full coverage crowns because of their low strength; however, they can be used for inlays and onlays.⁽³⁾

Lithium disilicate ceramics:

Lithium disilicate ceramic is a silica-based ceramic available in sintered, pressed and milled forms. Lithium disilicate ceramics consist of about 65% by volume of highly interlocking lithium disilicate crystals dispersed in a glassy matrix. These ceramics have high flexural strength (300-400MPa) and high fracture toughness. Lithium disilicate restorations combine strength with good esthetics. (3,4)

Zirconia-based Ceramics:

Zirconia is used as a biomaterial because of superior mechanical properties, chemical inertness and biocompatibility. Normally, zirconia is doped with a small amount of yttria (Y2O3) to form yttria tetragonal zirconia polycrystals (TZP) which increases the fracture toughness, flexural strength and wear resistance. Yttria tetragonal zirconia polycrystals are widely used in dentistry as root canal posts, orthodontic brackets, dental implant abutments and all-ceramic restorations. Zirconia-based ceramics utilize CAD/CAM technology for fabrication of copings for crowns, bridges and implant abutments. Zirconia (zirconium oxide, TZP) is milled in the "green" or presintered state and then sintered, during which the material shrinks about 20%. After the copings are fabricated, a ceramic veneer

compatible with the properties of the zirconia coping is pressed, stacked or milled, creating a uniquely strong and esthetic restoration. Values of flexural strength range from 800 to 1500 MPa. (3-6)

Biological characteristics of zirconia:

1 Biocompatibility:

In vitro and in vivo studies have confirmed a high biocompatibility of zirconia, especially when it is completely purified of its radioactive contents ^(7,8). Generally, ceramics are inert materials, which have no adverse local or general tissue reactions. ^(9,10)

2 Degree of toxicity

In vitro tests have shown that zirconia has a lower toxicity than titanium oxide and similar to alumina. Cytotoxicity, carcinogenicity, mutagenic or chromosomal alterations in fibroblasts or blood cells has not been observed. (11)

Mechanical characteristics of zirconia:

1. Flexural strength

It can be defined as the final force required to cause fracture and is strongly affected by the size of flaws and defects on the surface of the material tested. Microcracks and defects that inherently grow during the thermal and mechanical