Effect of hemodynamically significant patent ductus arteriosus on systemic blood flow, perfusion index and amplitude integrated electroencephalogram in neonates

Thesis
Submitted for partial fulfillment of MD degree in **Pediatrics**

Presented by Mariam John Amin Ibrahim

M.B,B.CH (2008) Msc. Pediatrics (2013) Ain Shams University

Under supervision of

Prof.Zeinab Anwar Elkabany

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof.Sahar Mohamed Ahmed Hassanein

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Ghada Ibrahim Gad

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Noha Refaat Mohamed

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Noureldin Mohamed AbdElal

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain shams University 2017

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Zeinab Anwar Elkabany**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great support and advice, her valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Prof. Sahar Mohamed Ahmed Hassanein**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for adding a lot to this work by her experience and for her keen supervision.

I am also thankful to **Prof. Ghada Ibrahim Gad**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Dr. Noha Refaat Mohamed**, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

I cannot forget the great help of **Dr. Noureldin Mohamed AbdElal**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into the light.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support.

Contents

	Page
List of Abbreviations	i
List of Tables	iv
List of Figures	
vii93	
Introduction	1
Aim of the Work	5
Review of Literature	6
* Patent Ductus Arteriosus	6
* Systemic Blood Flow	40
* Amplitude Integrated Electroencephalogram	57
* Perfusion Index	70
* Neuron Specific Enolase	76
Patients and Methods	79
Results	93
Discussion	119
Conclusion and Recommendations	130
Summary	132
References	135
ArabicSummary	_

List of Abbreviations

2D : Two-dimensional A wave : Late active phase AC : Arterial component

aEEG : Amplitude-integrated electroencephalographm

Ao : Aorta

AoCSA : Aortic root cross sectional area

ARF : Acute renal failure

BS- : Burst density <100 bursts/h
BS+ : Burst density >100 bursts/h

BSA : Burst-suppression

C : Continuous

CBC : Complete blood count cEEG : Conventional EEG

CFM : Cerebral function monitor
 CHD : Congenital heart disease
 CNS : Central nervous system
 CI : Confidence interval

COX : Cyclo-oxygenase enzyme

CPAP : Continuous positive airway pressure.

CRP : C-reactive protein
CSF : Cerebrospinal fluid

CWD : Continuous wave Doppler

DAo : Descending aorta

DBP : Diastolic blood pressure

Dc : Discontinuous

DC : The non-pulsatile component

E wave : Early passive phase

ECMO : Extracorporeal membrane oxygenator

EDTA : Ethylenediaminetetraacetic acid

EEG : Electroencephalogram

ELBW : Extremely low birth weight

FiO2 : Fractional concentration of inspired oxygen.

FnECHO: Functional echocardiography

List of Abbreviations (Cont.)

FT : Inactive flat

HFV : High frequency ventilation.

HsPDA : Hemodynamically significant PDA

Hz : Hertz

IBI : Interburst intervalIQR : Interquartile range

IR : Infrared

IV : Intra-venous LA : Left atrium

LED : Light emitting diode LPA : Left pulmonary artery

Lv : Low voltage LV : Left ventricle

LVEDD : Left ventricular end-diastolic diameter; LVESD : Left ventricular end-systolic diameter.

LVO : Left ventricular output MAP : Mean airway pressure. MBP : Mean blood pressure MCA : Middle cerebral artery

mcV : Micro-volt

MPA : Main pulmonary artery

Mv : Mitral valve

NEC : Necrotizing enterocolitis NICU : Neonatal intensive care unit

NIPPV : Non invasive positive pressure ventilation.

NSE : Neuron specific enolase

OD : Optical density OR : Odds ratio.

PAI : Pulse Amplitude Index PDA : Patent ductus arteriosus

PEEP : Positive end-expiratory pressure.

PGE2 : Prostaglandin E2
PGI2 : Prostacyclin
PI : Perfusion index

List of Abbreviations (Cont.)

PIP : Peak Inspiratory pressure.
PPG : Photoplethysmography
PPI : Peripheral perfusion index

PWD : Pulsed wave Doppler

RA : Right atrium

RDS : Respiratory distress syndrome

RPA : Right pulmonary artery

RV : Right ventricle

RVO : Right ventricular output

RVSP : Right ventricular systolic pressure

SaO2 : Oxygen saturation

SBP : Systolic blood pressure

SET : Signal Extraction Technology

SIMV : Synchronized intermittent mandatory ventilation.

SV : Stroke volume

SVC
Superior vena cava
SWC
Sleep wake cycling
Ti
Inspiratory time.
Tv
Tricuspid valve
TV
Tidal volume.

VTI : Velocity time integral

List of Tables

Table	Title	Page
1	Factors associated with PDA in preterm infants.	13
2	Echocardiographic markers of HsPDA	16
3	Advantages and disadvantages of the different modalities of PDA treatment.	18
4	Suggested general guidelines for management of PDA.	21
5	Abnormal paroxysmal events that raise the suspicion for neonatal seizures.	58
6	High-risk clinical scenarios which may lead to consideration of long-term neonatal EEG monitoring	59
7	Suggested Classification of aEEG Patterns in Preterm and Term Infants.	62
8	Parameters used in Burdjalov et al score of aEEG.	65
9	Summary of Normal Single-channel aEEG features in Newborns at Different Gestational	67
10	Preductal and postductal PI in healty neonates	75
11	The range of serum NSE levels in preterms and fullterms and in different age groups	78
12	Parameters used in Hellström-Westas et al.score of aEEG	84
13	Parameters used in Burdjalov et al. score of aEEG	85
14	Mean absorbance units (450nm) and the corresponding values.	90
15	Demographic data of the studied neonates	94
16	Development of any complications in the studied neonates	95
17	Echocardiographic parameters of HsPDA found in the studied neonates	95
18	The different studied parameters in the presence of HsPDA	96

List of Tables (Cont.)

Table	Title	Page
19	aEEG parameters identified by Al Naqeeb et al	97
	score, Hellström Westas et al score and Burdjalov	
	et al. score in the presence of HsPDA	
20	Respiratory support used; mode used and Ventilator settings among the studied neonates	98
21	Drug therapies given to the studied neonates	99
22	Follow- up of the patient: short term outcome; Duration of mechanical ventilation, Duration of oxygen therapy, Duration of NICU admission	100
23	Comparison of vital data in the presence of HsPDA and after ductal closure	101
24	Comparison of complete blood picture and C-reactive protein in the presence of HsPDA and after ductal closure	102
25	Association between aEEG parameters identified by Al Naqeeb et al. score in the presence of HsPDA and after ductal closure	103
26	Association between aEEG parameters identified by Hellström-Westas et al. score in the presence of HsPDA and after ductal closure	104
27	Association between aEEG parameters identified by Burdjalov et al. score in the presence of HsPDA and after ductal closure	104
28	Comparison between total Burdjalov score in the presence of HsPDA and after ductal closure	105
29	Comparison between central blood flow measurements in the presence of HsPDA and after ductal closure; patients divided according to gestational age	106
30	Comparison between perfusion index and neuron specific enolase in the presence of HsPDA and after ductal closure	107

List of Tables (Cont.)

Table	Title	Page
Table		
31	Comparison between total Burdjalov score, perfusion index and neuron-specific enolase in the presence of HsPDA and after ductal closure;	108
	patients divided according to gestational age	
	Comparison between central blood flow	111
32	measurements and aEEG parameters identified according to Burdjalov et al. score	
33	Correlation between central blood flow	112
33	measurements and the total Burdjalov score	
	Comparison between Neuron specific enolase,	112
34	gestational age, postmenstrual age and total	
	Burdjalov score in the presence of HsPDA and	
	after duct closure	
35	Effect of ibuprofen on functional echo parameters after ductal closure	114
	Effect of ibuprofen on perfusion index, total	115
36	Burdjalov score, platelet count and neuron specific enolase after ductal closure	
	Association between duration of NICU admission,	116
37	duration of mechanical ventilation, duration of	
	oxygen therapy and mortality and the different	
	parameters studied in the presence of HSPDA.	117
	Correlation between duration of NICU admission, duration of mechanical ventilation, duration of	11/
	oxygen therapy and total Burdjalov score, SVC	
38	flow, RVO, LVO and PI and comparison of	
	mortality in the same parameters studied in the	
	presence of HSPDA.	

List of Figures

Fig.	Title	Page
1	Schematic drawings illustrating the changes that result during transformation of the truncus arteriosus, aortic sac, aortic arches, and dorsal aortae into the adult arterial pattern.	7
2	Ductus arteriosus' origin from the bifurcation of pulmonary trunk	10
3	Anatomy of the PDA.	10
4	Mechanism of action of pharmacological agents used in PDA closure.	22
5	Diagrammatic representation of the configuration of the ductus as demonstrated on the lateral angiogram can be classified as described by Krichenko	34
6	Transcatheter closure of a small patent ductus arteriosus using a coil.	38
7	Distribution of patients undergoing echocardiography in NICU according to their indication	41
8	Common echocardiographic windows and views used in functional echocardiography	44
9	Long axis para-sternal view of the left ventricle.	45
10	Continuous wave Doppler of tricuspid regurgitation.	46
11	LVO Probe position and apical long axis view of the heart	49
12	Two dimensional and color Doppler images of a patent ductus arteriosus	51
13	Pulse-wave Doppler of the ductus arteriosus at the pulmonary end demonstrates Pulsatile unrestrictive flow	52

List of Figures (Cont.)

Fig.	Title	Page
14	The SVC flow obtained by low subcostal view with the diastolic, systolic and atrial waves	54
15	Pulse wave Doppler of the superior mesenteric artery demonstrates loss of normal diastolic flow in the presence HsPDA and restoration of diastolic flow	55
16	Pulsed Doppler of the descending aorta and the left pulmonary artery	55
17	Two pairs of bihemispheric leads. The raw EEG signal from the two channels is displayed above the time-compressed aEEG tracing	60
18	The varying bandwidth from 0 to 10 mV (linear) and from 10 to 100 mV (logarithmic) on both tracings. Sleep—wake cycling is clearly evident	63
19	Seizures in aEEG	63
20	Different patterns seen in aEEG	64
21	Artifacts in aEEG	69
22	Neuron specific enolase standard curve.	90
23	Flow chart of the study population	93
24	Duration of ibuprofen given	100
25	Comparison of vital data in the presence of HsPDA and after ductal closure	101
26	Comparison of complete blood count and C-reactive protein in the presence of HsPDA and after ductal closure	102
27	Comparison of Platelets in the presence of HsPDA and after ductal closure	103
28	Comparison of SVC, RVO, and LVO in the presence of HsPDA and after ductal closure at gestational age ≤ 34 weeks	106

List of Figures (Cont.)

Fig.	Title	Page
29	Comparison of SVC, RVO, and LVO in the presence of HsPDA and after ductal closure at gestational age > 34 weeks	107
30	Comparison of Total Burdajlov score, Perfusion index and NSE in the presence of HsPDA and after ductal closure at gestational age ≤ 34 weeks	109
31	Comparison of Total Burdajlov score, Perfusion index and NSE in the presence of HsPDA and after ductal closure at gestational age > 34 weeks	109
32	Comparison of Total Burdajlov score, Perfusion index and NSE in the presence of HsPDA according to gestational age	110
33	Comparison of Total Burdajlov score, Perfusion index and NSE after ductal closure according to gestational age	110
34	Correlation between Burdjalov score and perfusion index in the presence of HsPDA	113
35	Correlation between Burdjalov score and NSE in the presence of HsPDA	113
36	Correlation between Burdjalov score and NSE after ductal closure	114
37	Correlation between total Burdjov score before duct closure and duration of mechanical ventilation	117
38	Correlation between total Burdjov score before duct closure and duration of oxygen therapy	118

Introduction

Patent ductus arteriosus (PDA) is a major morbidity in preterm infants, especially in extremely premature infants less than 28 weeks. The clinical signs and symptoms of PDA in preterm infants are non specific and insensitive for making an early diagnosis of significant ductal shunting. Functional echocardiography is emerging as a new valuable bedside tool for early diagnosis of hemodynamically significant ductus, even though there are no universally accepted criteria for grading the hemodynamic significance (Sasi and Deorari, 2011).

Natural ductal closure is inversely related to gestational age and birth weight. The incidence of PDA ranges from 15% to 37% in newborn babies less than 1750 grams; this is very high compared to incidence of 2/1000 in term newborns. However, this does not mean that all PDA in preterm infants are hemodynamically significant warranting treatment (*Jegathesen et al.*, 2008).

The presence of PDA has significant effects on myocardial functions as well as systemic and pulmonary blood flow. Preterm newborns adapt, by increasing the left ventricular contractility, and thereby maintaining the effective systemic blood flow even when the left to right shunts equals 50% of the left ventricular output. This is mainly accomplished by an increase in stroke volume (SV) rather than heart rate. This increase in stroke volume is primarily due to reduction in after load and simultaneous increase in left ventricular preload (*Shimada et al.*, 1994).

Despite the increased left ventricular output, there is a significant redistribution of blood flow to major organ systems, with the presence of *ductal steal* seen in PDA due to left to right shunt, the maximum of which occurs at the beginning of the cardiac systole when the pressure gradient is maximum (*Clyman*, 2006).

systemic This steal phenomenon may lead to cardiac Hence hypoperfusion, despite increased output. hemodynamically significant PDA (HsPDA) has a negative effect on cerebral circulation and oxygenation, which may lead to injury to the immature brain (Lemmers et al., 2008).

With the emergence of functional echocardiography, the identification of PDA with hemodynamic significance is made well before the clinical manifestations set in. This emerging practice of identifying significant ductus early in life, often within first 24 hours, by in house echocardiography and instituting treatment is called early targeted treatment (*Osborn et al.*, 2003).

The hemodynamically significant PDA is determined echocardiographically with Trans-ductal diameter ≥ 1.4 mm, Left pulmonary artery diastolic flow peak velocity ≥ 0.2 cm/secand left atrium/ aortic root ratio ≥ 1.4 . (*El Hajjar et al.*, 2005).

First line treatment is optimizing oxygen delivery by treating anemia and achieving adequate arterial oxygen tension, as well as employing fluid restriction and diuretics (*Yates*, 2012).

The pharmacological basis for medical therapy is the use of non selective cyclo-oxygenase (COX) inhibitors, which inhibits prostaglandin synthesis and causes ductal constriction. The two most widely studied and used non selective COX inhibitors are indomethacin and ibuprofen (*Narayanan and Clyman*, 2003).

Many studies have compared the use of oral ibuprofen versus intra-venous (IV) indomethacin and IV ibuprofen and have confirmed the high closure rates and favorable safety profile of oral ibuprofen. This is why we use oral ibuprofen in our hospital in addition to its availability and cheapness (*Yang et al.*, 2013; *Erdeve et al.*, 2012).

Despite three decades of intense research enrolling thousands of preterm infants, evidence for the long term benefits of pharmacological closure of PDA is inconclusive and debatable. There is an emerging school of thought advocating conservative

approach, with medical therapy reserved for compelling indications like refractory hypotension or congestive heart failure attributed to large ductal shunt (*Bose and Laughon*, 2007).

The decision to treat PDA depends on 3 factors - the spontaneous closure rate, adverse effect of ductal patency, and risk benefit of treatment (*Benitz*, 2010).

The hemodynamic condition of newborn infants is often assessed by clinical variables such as heart rate, blood pressure and capillary refill. However, these markers are all poorly correlated to central blood flow, which seems to be a more accurate variable for determining the hemodynamic condition of newborn infants (*Sehgal and McNamara*, 2008).

Central blood flow can be measured in the great vessels entering or leaving the heart and the most commonly measured flows in newborn infants are right ventricular output (RVO), left ventricular output (LVO) and superior vena cava (SVC) flow. Studies in preterm infants have shown that abnormal central blood flow is associated with poor neuro developmental outcome (*Hunt et al.*, 2004).

Perfusion index (PI) is a noninvasive method of measuring peripheral perfusion and represents an objective assessment of the strength of the pulse. Perfusion Index may be a promising adjunct to the assessment of circulatory status in the newborn. The foot PI measured by pulse oximetry seems to be mre feasible for monitoring peripheral perfusion in the neonatal intensive care unit (Zaramella et al., 2005; De felice et al., 2002).

The relation between perfusion index and systemic blood flow has yet to be studied, especially in neonates with HsPDA. We will try to achieve this in our present study.

Although several neuro-imaging and neurophysiologic methods have been developed, cerebral function monitoring has not been included in the routine neonatal intensive care unit (NICU) yet. Electroencephalography (EEG) is considered the standard method for intermittent evaluation of functional brain