DRYING CHARACTERISTICS AND QUALITY CHANGES OF MORINGA AND NEEM LEAVES

By

AYA EZZAT SAAD MOHAMED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Cairo University
EGYPT

2016

SUPERVISION SHEET

DRYING CHARACTERISTICS AND QUALITY CHANGES OF MORINGA AND NEEM LEAVES

M.Sc. Thesis
In
Agric. Sci. (Agricultural Engineering)

 $\mathbf{B}\mathbf{y}$

AYA EZZAT SAAD MOHAMED

B.Sc. Agric. Sci. (Agricultural Engineering), Fac. Agric., Cairo Univ., 2011

SUPERVISION COMMITTEE

Dr. AHMED EL-RAIE EMAM SULIMAN
Professor of Agricultural Engineering, Fac. Agric., Cairo University

Dr. YOSSRY BAYOUMY ABDELHAY Lecturer of Agricultural Engineering, Fac. Agric., Cairo University

Name of candidate: Aya Ezzat Saad Mohamed Degree: M.Sc.

Title of Thesis: Drying Characteristics and Quality Changes of Moringa and

Neem Leaves.

Supervisors: Dr. Ahmed El-Raiez Emam

Dr. Yossry Bayoumy Abdelhay

Department: Agricultural Engineering **Branch:** Food Processing Engineering

Approval: 18 / 8 / 2016

ABSTRACT

The drying characteristics and quality changes of moringa and neem leaves were examined in this study in the laboratory of the department of agricultural engineering, faculty of agriculture, Cairo University and they examined by using artificial dryer, direct and indirect solar dryers. Three different drying air temperatures 40°C, 50°C and 60°C and three different air velocities 0.45 m/s, 1.00 m/s and 1.50 m/s were used by artificial dryer. The initial moisture content of moringa and neem leaves were 86.7 and 84% respectively and it decreased with the increasing of drying air temperature and air velocity. The drying rate was faster at the beginning than that at the end for all treatments. By using the artificial dryer, at drying air temperature 60°C with air velocity 1.5 m/s showed the best data, at which in dried moringa and neem leaves, the moisture content decreased to 9.35% within drying time 5.5 hours and 8.75% within drying time 10 hours respectively, the average drying rate was 14.06 and 7.525 %/h respectively, drying ratio was 4.42:1 and 4.04:1 respectively and the average evaporative rate was 28.13 gmwater/h and 15.05 gmwater/h respectively. Also, the quality tests of dried moringa leaves showed that, at air temperature 60°C with air velocity 1.5 m/s showed the best quality in terms of higher retention of protein and potassium, while at air temperature 40°C with air velocity 0.45 m/s showed the best quality in terms of higher retention of vitamin C and calcium. The quality tests of dried neem leaves showed that, at air temperature 50°C with air velocity 1.5 m/s showed the best quality in terms of higher retention of flavonoids. While, at air temperature 60°C with air velocity 1.5 m/s showed the best quality in terms of higher retention of tannins. By using solar dryers, the indirect solar dryer showed the best data, at which in dried moringa and neem leaves the moisture content decreased to 14.6% within drying time 13 hours and 16.9% within drying time 17.5 hours respectively, the average drying rate was 5.55 and 3.834 %/h respectively, drying ratio was 3.58:1 and 3.04:1 respectively and the average evaporative rate was 11.09 gmwater/h and 7.669 gmwater/h respectively. Also, the quality tests of dried moringa leaves showed that, drying by direct solar dryer gave the best quality in terms of higher retention of vitamin C and potassium, while drying by indirect solar dryer gave the best quality in terms of higher retention of protein and Calcium. The quality tests of dried neem leaves showed that, drying by direct solar dryer gave the best quality in terms of higher retention of tannins, while drying by indirect solar dryer gave the best quality in terms of higher retention of flavonoids.

Key words: Drying characteristics, Quality, Moringa, Neem, Solar dryers, Artificial dryer

DEDICATION

I dedicate this work, to my parents and brothers for all the support they lovely offered during my post-graduate study

ACKNOWLEDGEMENT

Thanks and praise to the merciful Allah, who gave me the patience to conduct this research.

I would like to express my deepest appreciation to my supervisors **Dr.** Ahmed **El-raie** Emam Suliman professor of Agricultural Engineering, Agricultural Engineering Department, faculty of Agriculture, Cairo University and **Dr.** Yossry Bayoumy Abdelhay Lecturer of Agricultural Engineering, Agricultural Engineering Department, faculty of Agriculture Cairo University for their encouragement, advice, and guidance through this work. Thanks are also extended to the staff members of department of agricultural engineering, faculty of agriculture.

Special thanks are extended to my friends and colleagues. Finally, my thanks and appreciation to my family, for their patience, moral support and encouragement during the study period.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Drying theory	
2. Mechanism of drying	· • •
3. Advantage of drying	••
4. Disadvantage of drying	
5. Drying characteristics	
6. Thin layer drying models	
7. Methods of drying	
a. Solar drying	
b. Artificial drying	
8. Factors affecting the drying rate	
a. The temperature of drying air	
b. The air velocity	
c. The relative humidity of drying air	
9. Medicinal and aromatic plants	
a. Moringa oleifara	
b. Neem (Azadirachta indica)	
MATERIALS AND METHODS	•••
1. MATERIALS	
a. The experimental Plant	
b. The experimental dryers	
c. The Experimental treatments	
d. Measuring Apparatuses	
2. METHODS	
RESULTS AND DISCUSSION	
1. Artificial drying of moringa and neem leaves	
a. The effect of drying air temperature and air velocity of	n
drying characteristics of moringa leaves	
b. Means of drying characteristics of moringa leaves	
different drying air temperatures and air velocities	

c.	Effect of drying air temperature and air velocity on drying
	quality of moringa leaves
d.	Effect of drying air temperature and air velocity on drying
	characteristics of neem leaves
e.	Means of drying characteristics of neem leaves at different
	drying air temperatures and air velocities
f.	The effect of drying air temperature and air velocity on
	drying quality of neem leaves
2. 8	Solar drying of moringa and neem leaves
a.	Thermal performance for solar dryers without load
b.	Thermal performance of solar dryers during solar drying
	process of moringa leaves
c.	The effect of drying by using direct solar dryer on drying
	characteristics of moringa leaves
d.	The effect of drying by using indirect solar dryer on
	drying characteristics of moringa leaves
e.	Means of drying characteristics of moringa leaves by
	using direct and indirect solar drying
f.	Effect of solar drying on drying quality of moringa
	leaves
g.	Thermal performance of solar dryers during solar drying
	process of neem leaves
h.	The effect of drying by using direct solar dryer on drying
	characteristics of neem leaves
i.	The effect of drying by using indirect solar dryer on
	drying characteristics of neem leaves
j.	Means of drying characteristics of neem leaves by using
	direct and indirect solar drying
k.	The effect of solar drying on drying quality of neem
	leaves
1.	The thermal efficiency of direct and indirect solar dryers
	for solar drying of moringa and neem leaves
SU	MMARY

REFRANCE	107
APPENDICIES	120
ARARIC SUMMARV	

LIST OF TABLES

No.	Title	Page
1.	Mathematical models of thin layer drying	11
2.	Means of moisture content (wet base) of moringa leaves	
	at different drying air temperatures and air velocities	64
3.	Means of moisture content (dry base) of moringa leaves	
	at different drying air temperatures and air velocities	64
4.	Means of moisture ratio of moringa leaves at different	
	drying air temperatures and air velocities	65
5.	Means of drying rate of moringa leaves at different	
	drying air temperatures and air velocities	65
6.	Effect of drying air temperatures and air velocities on	
	quality of moringa leaves	66
7.	Means of moisture content (wet base) of neem leaves at	
	different drying air temperatures and air velocities	75
8.	Means of moisture content (dry base) of neem leaves at	
	different drying air temperatures and air velocities	75
9.	Means of moisture ratio of neem leaves at different	
	drying air temperatures and air velocities	76
10.	Means of drying rate of neem leaves at different drying	
	air temperatures and air velocities	76
11.	Effect of drying air temperatures and air velocities on	
	quality of neem leaves	77
12.	Outside temperatures (To), relative humidity (RH) and	
	solar radiation (SR) with inside temperatures (T _i) for	
	direct and indirect solar dryers during 26th of July 2015	
	without load	78
13.	Outside air temperature (T_{o}) , relative humidity (RH) and	
	solar radiation (SR) with inside air temperature (T_i) for	
	direct and indirect solar dryers during solar drying	
	process of moringa leaves	81
14.	Air properties using in drying process of moringa leaves	
	(outside air properties)	83

15.	Means of drying characteristics of moringa leaves by using	
	direct and indirect solar drying	88
16	Effect of solar drying (direct and indirect solar dryers)	
	on quality of moringa leaves	89
17	Outside air temperature (T _o), relative humidity (RH) and	
	solar radiation (SR) with inside air temperature (T _i) for	
	direct and indirect solar dryers during solar drying	
	process of neem leaves	91
18.	Air properties using in drying process of neem leaves	
	(outside air properties)	93
19.	Means of drying characteristics of neem leaves by using	
	direct and indirect solar drying	98
20.	Effect of solar drying (direct and indirect solar dryers)	
	on quality of neem leaves	99
	* *	