A randomized trial of combined letrozole with metformin versus clomiphene citrate with metformin in PCOS patients

Thesis

Submitted for Fulfillment of M.Sc. degree
In
Obstetrics and Gynecology

Presented By

Mohamed Aly Hassan Aly

(M.B.B.CH.)
(2006)
Faculty of Medicine
Cairo University

Resident of Obstetrics and Gynecology
Police hospital

Supervised By

Prof.Dr. Abdel-Maguid Ramzy

Prof. of Obstetrics and Gynecology Faculty of Medicine Cairo University

Dr. Hossam ElShenoufy

Lecturer of Obstetrics and Gynecology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2015

(التوبة،٥٠١)

Acknowledgement

First and foremost, I am thankful to ALLAH, for without his grace, this work would never have been accomplished

I am honored to have **Prof. Dr.Abdel-Maguid Ramzy** Professor of Obstetrics & Gynecology, Faculty of Medicine, Cairo University, as a supervisor of this work. I am so grateful and most appreciative to his efforts. No words can express what I owe him for his endless patience and continuous advice and support.

I am extremely indebted to **Dr.** Hossam ElShenoufy Lecturer of Obstetrics & Gynecology, Faculty of Medicine, Cairo University, for his endless flow of advices, valuable ideas and helpful instructions which helped me to complete this work

I wish to express my thanks to all my professors, my senior staff members, my wonderful friends and colleagues for their guidance and cooperation throughout the conduction of this work.

And finally I would like to express my sincere thanks to all my family for their support.

Abstract

Polycystic Ovary Syndrome (PCOS) is one of the most common causes of anovulatory infertility. Currently, CC is considered first-line therapy for ovulation induction for women with PCOS and infertility

Aromatase inhibitors (AIs) have been introduced as a new treatment option that could challenge CC for ovulation induction

The present study was designed to compare the efficacy of combined aromatase inhibitors (Letrozole) with metformin versus CC with metformin in PCOS patients

This study was done on 100 documented PCOS cases. They were divided to two groups,

The 1st **group** received CC 50mg twice daily from the 3rd day of cycle for 5 days and repeated for 3 cycles with metformin 500mg 3 times daily as an adjunct with CC and continued for 3 cycles.

The 2nd group received aromatase inhibitor (Letrozole) 2.5 mg twice daily from 3rd day of cycle for 5 days and repeated for 3 cycles with metformin 500mg 3 times daily as an adjunct with letrozole and continued for 3 cycles.

These cases were followed up for three cycles by transvaginal ultrasound folliculometry to document ovulation (size and number of follicles).

The results of the present study revealed both lines of treatment were effective in treatment of PCOS patients, with slight favorability in letrozole group but without statistically significant difference founded between CC group and letrozole group as regard ovulation rate, number of follicles in the end of first, second or third cycles, or as regard the diameter of follicles, i.e., both regimens showed efficacy to the same extent.

Key Words:

PCOS –clomiphene citrate – letrozole -metformin

List of Abbreviations

Abbreviation		Full name
3β-HSD	:	3β-hydroxysteroid dehydrogenase
ACC	:	Acetyl-CoA carboxylase
ACTH	:	Adrenocorticotrophic hormone
ADMA	:	Asymmetric dimethylarginine
AES	:	Androgen excess society
AGEs	:	Advanced glycated end products
Ais	:	Aromatase inhibitors
AKT	:	Protien kinase B(known as Akt)
АМН	:	Antimullerian hormone
AMPK	:	50-AMP-activated protein kinase
BMI	:	Body mass index
САН	:	Congenital adrenal hyperplasia
СС	:	Clomiphene citrate
CVD	:	Cardio vascular disease
CYP 2A6	:	Cytochrome P 450 2A6
CYP 3A4	:	Cytochrome P 450 3A4
CYP11A1	:	Cytochrome P450, family 11, subfamily A, polypeptide 1
CYP17	:	Cytochrome P450, family 17
CYP19A1	:	Cytochrome P450, family 19, subfamily A, polypeptide 1

Abbreviation		Full name
CYP-450	:	Cytochrome450
D	:	Day
DHEA	:	Dehydroepiandrosteron.
DHEAS	:	Dehydroepiandrosterone sulphate
DHT	:	Dihydrotestosterone
DPP	:	Diabetes prevention program
E2	:	Estradiol
EC	:	Endothelial cells
ER	:	Estrogen receptor
ERs	:	Estrogen receptors
ET-1	:	Endothelin-1
FA	:	Fatty acid
FBS	:	Fasting blood Sugar
FDA	:	Food and drug adminstration
FFA	:	Free fatty acid
FSH	:	Follicle-stimulating hormone
FST	:	Follistatin
G/I	:	Glucose to insulin ratio
GD	:	Gestational diabetes
GLUT-4	:	Glucose transporter type 4

Abbreviation		Full name
GnRH	:	Gonadotrophin-releasing hormone
GSK-3	:	Glycogen synthase kinase-3
НА	:	Hyperandrogenic
НСG	:	Human Chrionic Gonadotropin
HDL	:	High density lipoprotein
HGP:	:	Hepatic glucose production
НОМА	:	Homeostasis model assessment
HOMA-IR	:	Homeostatic assessment model for insulin resistance
HSG	:	Hysterosalpingogram
HUVECs	:	Human umbilical vein endothelial cells
IGF-1	:	Insulin-like growth factor I
IGFBP-1	:	Insulin-like growth factor binding protein-1
IGF-II	:	Insulin-like growth factor II
IGT	:	Impaired glucose tolerance
IMGU	:	Insulin-mediated glucose uptake
IR	:	Insulin resistance
IRs	:	Insulin receptor substrate
IUI	:	Intra uterine insemination
IVF	:	In vitro fertilization
LDL	:	Low density lipoprotein

Abbreviation		Full name
LH	:	Luteinizing hormone
MAP	:	Mitogen-activated protein
MAPK	:	Mitogen-activated protein kinase
MFO	:	Multifollicular oocyte
MS	:	Metabolic syndrome
NAFLD	:	Non Alcholic Fatty Liver Disease
NASH	:	Nonalcoholic steatohepatitis
NASHES III	:	National health and nutrition examination survey three
NF	:	Nuclear factor
NIH	:	National institutes of health.
NO	:	Nitric oxide
no	:	Number of
NOS	:	Nitric oxide synthases
NPY	:	Neuropeptide Y
OCPs	:	Oral contraceptive pills
OGTT	:	Oral glucose tolerance test
OHSS	:	Ovarian hyperstimulation syndrome
OSA	:	Obstructive sleep apnea
P1	:	Initial mid luteal serum progesterone.
P4	:	Progesterone.

Abbreviation		Full name
P450	:	P450 side-chain cleavage
PAI-1	:	Plasminogen activator inhibitor-1
PAT-1	:	Plasminogen activator type 1
PCOM	:	Polycystic ovarian morphology
PCOS	:	Polycystic ovary syndrome
PI3K	:	Phosphatidylinositol 3-kinases
PKA	:	Protein kinase A
PKB	:	Protien Kinase B(known as Akt)
RCT	:	Randomized controlled trial
RCTs	:	Randomized controlled trials
SBP	:	Systolic blood pressure
SHBG	:	Sex hormone binding globulin
SLE	:	Systemic lupus erythematosis
SM	:	Skeletal muscle
StAR	:	Steroidogenic acute regulatory protein
STK11	:	Serine/threonine kinase 11
Т	:	Testosterone
T1/2	:	Terminal half-life
T2DM	:	Type two diabetes mellitus
TGF-β	:	Transforming growth factor β.

Abbreviation		Full name
TNF	:	Tumor necrosis factors
TNF-α	:	Tumor necrosis factor- alpha
TSH	:	Thyroid-stimulating hormone
TVUS	:	Trans vaginal ultrasound
TZDs	:	Thiazolidinediones
VEGF	:	Vascular endothelial growth factor
VLDL	:	Very low density lipoproteins
VSMC	:	Vascular smooth muscle cells
WC	:	Waist circumference
WHO	:	World Health Organization
WHR	:	Waist-to-hip ratio
Wk	:	Weeks

List of tables

Table number	Title	Page number
Table (1)	Clinical manifestations of PCO	11
Table (2)	Comparison between CC and letrozole groups as regards age and duration of infertility and BMI	68
Table (3)	Comparison between CC and letrozole groups as regards pregnancy rate	69
Table (4)	Effect of treatment on ovulation in studied groups	70
Table (5)	Effect of treatment on the number of follicles in studied groups	71
Table (6)	Effect of treatment on the mean follicular diameter (MFD) in studied groups	72
Table (7)	Effect of treatment on the number of follicles >18mm	73
Table (8)	Effect of treatment on, cumulative number of follicles, mean follicular diameter, and endometrial thickness between the study groups.	74

List of figures

Figure	Title	Page	
number	Title	number	
Figure (1)	Pathogenesis of PCOS neuroendocrine dysfunction	8	
Figure (2)	Clinical manifestations of PCOS: (A) visceral obesity, (B)	15	
	alopecia, (C) hirsutism and treatment-resistant acne, (D),		
	acanthosis nigricans and skin tags		
Figure (3)	TVS image of an ovary with classic appearance of PCOS	16	
Figure (4)	Actions of metformin in the liver	29	
Figure (5)	Actions of metformin on skeletal muscle	31	
Figure (6)	Actions of metformin on adipose tissue	32	
Figure (7)	Actions of metformin on the ovary	33	
Figure (8)	Aromatization of androgens to estrogens in postmenopausal	52	
	women. A androstenedione, E1 estrone, E1S estrone sulfate,		
	E2 estradiol, T testosterone		
Figure (9)	Comparison of the molecular structures of aromatase	55	
	inhibitors		
Figure (10)	Comparison between CC and letrozole groups as regards age	68	
	and duration of infertility and BMI		
Figure (11)	Comparison between CC and letrozole groups as regard	69	
	pregnancy rate.		
Figure (12)	Effect of treatment on ovulation in studied groups	70	
Figure (13)	Effect of treatment on the number of follicles in studied	71	
	groups		
Figure (14)	Effect of treatment on the mean follicular diameter in	72	
- , ,	studied groups		
Figure (15)	Effect of treatment on the number of follicles >18m	73	
Figure (16)	Effect of treatment on cumulative number of follicles, mean	74	
	follicular diameter, and endometrial thickness between the		
	studies groups.		

Content

Content	page
Introduction & Aim of work	1
Polycystic ovary syndrome	5
Metformin	29
Clomiphene citrate	45
Letrozole	52
Patients and methods	64
Result	68
Discussion	75
summary	82
Conclusion	84
References	85
Arabic summary	

Introduction

Infertility has been attributed to various factors, amongst which anovulation is the cause in about 40% of all female infertility

Polycystic Ovary Syndrome (PCOS) is one of the most common causes of anovulatory infertility, affects 4-7% of women (*Ehrmann*, 2005).

Criteria used for diagnosing Polycystic Ovary Syndrome (PCOS) are the Rotterdam Criteria of which a woman must have two out of the followings:

- 1: Oligo- or anovulation.
- 2: Clinical and / or biochemical signs of hyperandrogenism
- 3: Polycystic ovaries (with the exclusion of related disorders).
- -With exclusion of other conditions with similar signs such as androgen-secreting tumors or Cushing's syndrome and thyroid dysfunction and hyperprolactinemia.
- Anti estrogenic drug, such as Clomiphene citrate (CC) is considered the first line treatment for induction of ovulation in women with Polycystic Ovary Syndrome (PCOS). CC is given orally at a dose of 50-100 mg/day from 3rd day of cycle for 5 days. If patients fail to respond to 150 mg/day, they are considered as CC resistant.
- Aromatase inhibitors (AIs) have been introduced as a new treatment option that could challenge CC for ovulation induction (Casper RF and Mitwally MF (2006)

Aromatase is a cytochrome P-450 hem protein containing enzyme complex (the product of the CYP19 gene) that catalyzes the rate-limiting step in the production of estrogens which is the conversion of androstenedione and testosterone via three hydroxylation step to estrone and estradiol.

Introduction

Aromatase activity is present in many tissues such as the ovaries, adipose tissue, muscle, liver, breast tissue, and in malignant breast tumors. The main sources of circulating estrogens are the ovaries in premenopausal women and adipose tissue in postmenopausal women (*Cole and Robinson*, 1999).

Als can be applied for ovarian stimulation as its administration early in the follicular phase can induce ovulation by releasing the hypothalamus or pituitary from estrogen negative feedback on GnRH and gonadotropin secretion, leading to an increase in gonadotropin production which would stimulate ovarian follicular development (*Lidor et al.*, 2000).

Als prevent the Androgen-Estrogen conversion and therefore interfere with the negative feedback at the level of the hypothalamus-pituitary. The increased pituitary gonadotropin output will in turn stimulate the ovaries (*Mitwally et al.*, 2005).

Also, they act locally in the ovary to increase follicular sensitivity to FSH. This may result from accumulation of intraovarian androgens, since conversion of androgen substrate to estrogen is blocked. Recent data support a stimulatory role for androgens in early follicular growth (*Al-Omari et al.*, 2001; *Metawie*, 2001).

In some studies, letrozole in contrast to CC is better as it increases endometrial thickness by upregulation of estrogen receptors, so it increases pregnancy rate and also it decreases incidence of multiple pregnancy (*Fatemi et al.*, 2003; *Mitwally et al.*, 2005).

Als reported to be effective in inducing ovulation, increased pregnancy rate, improve uterine environment, endometrial development with favorable cervical mucus (*Mitwally et al.*, 2005).

-Insulin-sensitizing Agents for example :(Metformin)