Role of magnetic resonance imaging and its new techniques in detection of tumour viability and complications after thermal ablation therapy for hepatocellular carcinoma

Thesis

Submitted for partial fulfillment of the MD degree in Radiodiagnosis

By Bahaa El Din Mahmoud Hussein Mahmoud

MSc. of radiodiagnosis, Cairo University

Supervisors

Prof. Hamed Samir El Ghawaby

Professor of radiodiagnosis Faculty of medicine Cairo University

Dr. Mohamed Mahmoud Nabeel

Assisstant professor of tropical medicine Faculty of medicine Cairo University

Dr. Ahmed Hosni Kamel

Lecturer of radiodiagnosis
Faculty of medicine
Cairo University

Faculty of Medicine Cairo University 2014 بيتم التا التحميل

Acknowledgment

First and foremost thanks to **God** the Most Gracious, the Most Merciful.

I want to express the great honor of working under the supervision of **Prof. Dr. Hamed El Ghawaby**, professor of radiology, Cairo University. He has given me guidance and advice in every way he can during the course of this work.

I would like to express my deepest gratitude to Assistant **Prof Dr. Mohamed Mahmoud** assistant professor of tropical medicine, Cairo University; for his guidance and support.

My sincere thanks to **Dr. Ahmed Hosni**, Radiology Lecturer, Cairo University, who had tirelessly and patiently supervised this work.

I would like to express my deepest sense of gratitude to all members of **alfa scan** who helped me during this work.

My thanks and my love to all my professors and colleagues in the Radiology department for their support. Special thanks to **Dr. Reham Osama**, assistant lecturer of radiology, Cairo University for her great help and advice during this work.

This work would not have been possible without the help of **my dear wife,** I am heartily thankful for his endless love, care and support.

Last but not least I would like to say that I couldn't have reached this point in my life without the enduring efforts of my parents, no words can give them their right or describe how I am indebted to them.

ABSTRACT

MRI with its new functional imaging techniques including dynamic study and diffusion imaging is a powerful tool in detection of tumour viability and complications after thermal ablation of hepatocellular carcinoma. We found that dynamic study is the gold standard in detection of recurrent lesions. Well defined nodular enhancement, thick irregular marginal enhancement or gross enlargement of the lesion with arterial phase enhancement and contrast wash out were considered positive for malignancy. We also found that ADC measurement is reliable in differentiation between the recurrent malignant lesions and the post treatment reactive and vascular tissue changes with significant statistical differences between them.

KEY WORDS

MRI, thermal ablation, hepatocellular carcinoma, subtraction, diffusion.

TABLE OF CONTENTS

List of abbreviations	I - III
List of tables	IV
List of figures	V - X
Introduction	1-2
Aim of work	3
Chapter 1: Anatomy of the liver	4-13
Chapter 2: pathology of HCC	14-20
Chapter 3: physical principles of thermal ablation	21-30
Chapter 4: complications of thermal ablation	31-39
Chapter 5: technique of MRI of the liver	40-73
Chapter 6: MRI appearance of HCC	74-81
Chapter 7: MRI after thermal ablation	82-101
Patients and methods	102-108
Illustrative cases	109-132
Results	133-147
Discussion	148-158
Summary	159-161
References	162-173
Arabic summary	

LIST OF ABBREVIATIONS

2D	Two dimensional
3D	Three dimensional
ADC	Apparent diffusion coefficient
BB-EPI	black-blood echo planar
ВН	breath-hold
СТ	Computed tomography
DCE	Dynamic contrast enhanced
DW	Diffusion weighted
DWI	Diffusion weighted imaging
EASL	European Association for the Study of the Liver
EPI	Echo planner imaging
FOV	Field of view
FS	Fat suppression
FSE	Fast spin echo
Gd	gadolinium
Gd-BOPTA	gadobenate dimeglumine
Gd-DTPA	gadolinium diethylenetriamine penta-acetic acid
GRE	gradient recalled echo
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HPI	hepatic perfusion index
IVC	Inferior vena cava

LAVA	liver acquisition with volume acceleration
MIP	Maximum intensity projection
Mn-DPDP	mangafodipir trisodium
MR	magnetic resonance
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
MW	Microwave
MWA	Microwave ablation
RARE	rapid acquisition with relaxation enhancement
RECIST	Response Evaluation Criteria in Solid Tumors
RF	Radiofrequency
RFA	Radiofrequency ablation
ROI	Regions of interest
RT	respiratory-triggered
SD	Standard deviation
SGE	Spoiled gradient echo
SIR	Society of Interventional Radiology
SNR	Signal to noise ratio
SPAIR	spectral selection attenuated inversion recovery
SPIO	superparamagnetic iron oxide
SSFP	steady-state free precession sequence
SSTSE	single-shot turbo spin-echo sequence
STIR	Short-tau (T1)inversion recovery
TACE	Trans arterial chemoembolization

TE	Time of echo
THRIVE	T1 weighted high-resolution isotropic volume examination
TR	Time of repetition
TSE	Turbo spin echo
VIBE	volume interpolated breath-hold examination
WHO	World Health Organization
WI	Weighted images

LIST OF TABELS

		Page
Table 1	Differences between the Monopolar and the bipolar RF systems	23
Table 2	SIR Classification system for complications of thermal ablation	31
Table 3	Commonly used sequences in liver MR imaging	52
Table 4	Demographic features of the studied group	133
Table 5	Mean ADC values of the different study groups.	142
Table 6	Comparison between the mean ADC values of the different study groups.	144

LIST OF FIGURES

		Page
Figure 1	Segmental anatomy of the liver	5
Figure 2	Hypertrophied caudate lobe in liver cirrhosis	6
Figure 3	Normal hepatic arterial anatomy	7
Figure 4	The portal vein and its tributaries	8
Figure 5	Arrangement of the hepatic venous territories	9
Figure 6	Normal biliary anatomy MR cholangiography	10
Figure 7	MR anatomy of the hepatic veins	12
Figure 8	MR anatomy of the portal vein	12
Figure 9	Normal MR liver signal intensity on T1 l and T2 weighted images	13
Figure 10	Pathway of carcinogenesis in liver cirrhosis	15
Figure 11	Pathology of regenerative nodules	17
Figure 12	Pathology of dysplastic nodules	18
Figure 13	Histological appearance of fibrolamellar carcinoma	20
Figure 14	MR appearance of fibrolamellar carcinoma	20
Figure 15	Various radiofrequency (RF) electrodes	25
Figure 16	The StarBurst Xli enhanced RFA deice from RITA Medical Systems	25
Figure 17	Schematic illustrates the interaction between water molecules and microwaves	26
Figure 18	Laser applicators	28

Figure 19	Cryoablation probe	30
Figure 20	Portal vein thrombosis after RFA	32
Figure 21	Hepatic infarction after RFA	33
Figure 22	Hemorrhage after RFA	34
Figure 23	Biliary stricture after RFA	34
Figure 24	Biloma formation after RFA	35
Figure 25	Hepatic abscess in patient with hepatocellular carcinoma after RFA.	36
Figure 26	Hepatic abscess in patient with hepatocellular carcinoma after MWA.	36
Figure 27	Injury to the gallbladder and colon after RFA	37
Figure 28	Moderate pneumothorax after RFA	38
Figure 29	Tumour seedling after RFA	39
Figure 30	Importance of a multichannel array receiver coil.	41
Figure 31	Diffuse hepatic steatosis and hepatic adenoma by dual phase MR images	42
Figure 32	Hepatic hemangioma imaging with hepatobiliary contrast agents	47
Figure 33	Example of a multiarterial phase acquisition in a patient with a small HCC	49
Figure 34	Typical MR imaging examination of the liver	51
Figure 35	Schematic illustrates water molecule movement	54
Figure 36	Schematic illustrates the effect of a diffusion- weighted sequence on water molecules	55
Figure 37	Graph illustrates signal intensity versus <i>b</i> values at <i>DWI</i> of tissue with normal versus restricted diffusion	57
Figure 38	breath-hold versus respiratory-triggered diffusion acquisition	59

Figure 39	T2 shine-through in patient with a small cyst in the left hepatic lobe	60
Figure 40	Perfusion-MRI in patient with hepatocellular	63
g	carcinoma	
Figure 41	concentration-time curve in liver tissue	65
	obtained from a perfusion MRI study	
Figure 42	Perfusion MR imaging in liver metastasis	66
Figure 43	Perfusion MR imaging in liver metastasis after therapy	67
Figure 44	Subtraction technique in HCC	70
Figure 45	Subtraction imaging after RFA	70
Figure 46	Subtraction MR imaging in liver metastasis	71
Figure 47	Subtraction MR imaging in portal vein	71
	thrombosis	
Figure 48	Schema of misregistration in subtraction MR technique	72
Figure 49	False positive result of subtraction imaging	73
Figure 50	Typical MR appearance of hepatocellular carcinoma	76
Figure 51	HCC isointense on T2W MR images	77
Figure 52	Hypovascular HCC with fat at MR imaging	78
Figure 53	HCC with vascular invasion	80
Figure 54	Infiltrative HCC with vascular invasion	81
Figure 55	Regression in the size of the ablation zone at T1 WIs	86
Figure 56	Regression in the size of the ablation zone at T2 WIs	86
Figure 57	Signal of the ablation zone at T1 and T2 images	87
Figure 58	Perilesional rim after RFA	88

Figure 59	Liquifactive necrosis at T1 and T2 images	88
Figure 60	Enhancement pattern of the ablation zone	89
Figure 61	Patterns of peri ablational enhancement	89
Figure 62	Subtraction imaging after RFA	90
Figure 63	Vascular changes after RFA	92
Figure 64	asymptomatic gallbladder wall edema after RFA	92
Figure 65	Perihepatic hemorrhage after RFA	93
Figure 66	Inflammatory enhancement of intercostal muscle adjacent to region of ablation	93
Figure 67	Residual disease after ablation	94
Figure 68	Nodular recurrence after ablation	96
Figure 69	Halo recurrence after ablation	97
Figure 70	Local regrowth depicted only at T2- weighted MR imaging	97
Figure 71	Follow up of fatty HCC	98
Figure 72	DW signal alterations after RF ablation of HCC	100
Figure 73	Diffusion-weighted MRI to evaluate RFA recurrence	100
Figure 74	Diffusion-weighted MRI to evaluate RFA recurrence	101
Figure 75	Case 1	109
Figure 76	Case 1	109
Figure 77	Case 1	110
Figure 78	Case 2	111

Figure 79	Case 2	112
Figure 80	Case 2	112
Figure 81	Case 3	113
Figure 82	Case 3	114
Figure 83	Case 4	115
Figure 84	Case 4	116
Figure 85	Case 5	117
Figure 86	Case 5	118
Figure 87	Case 6	119
Figure 88	Case 6	120
Figure 89	Case 7	121
Figure 90	Case 7	121
Figure 91	Case 7	122
Figure 92	Case 8	123
Figure 93	Case 8	124
Figure 94	Case 9	125
Figure 95	Case 9	126
Figure 96	Case 10	127
Figure 97	Case 10	128
Figure 98	Case 11	129

Figure 99	Case 11	130
Figure 100	Case 11	130
Figure 101	Case 12	131
Figure 102	Case 12	132
Figure 103	Sex distribution of the studied group	133
Figure 104	Classification into resolved and unresolved groups	134
Figure 105	Signal intensity of the ablation zone in the non- enhanced T1 weighted images	135
Figure 106	Signal intensity of the ablation zone in the T2 & SPAIR weighted images	136
Figure 107	Classification of types of tumor recurrence	137
Figure 108	time of detection of the tumor recurrence	138
Figure 109	Signal intensity of the recurrent lesions in the non-enhanced T1 weighted images	138
Figure 110	Signal intensity of the recurrent lesions in the T2 weighted images	139
Figure 111	Arterial enhancement of the recurrent lesions	140
Figure 112	Delayed washout of the recurrent lesions	140
Figure 113	Signal intensity of the recurrent lesions in the diffusion weighted images	141
Figure 114	Mean ADC values	143
Figure 115	The presence of ill defined perilesional enhancement	145
Figure 116	The presence of well defined rim enhancement	146
Figure 117	Complications detected after thermal ablation	147