

بسم الله الرحمن الرحيم

-Call 6000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Ain Shams University Faculty of Computer & Information Sciences Computer Science Department

A Multi-Agent Based Framework for Managing Security Policies

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Science.

By

Mohamed Al-Morsy Abd Al-Razek

B.Sc. in Computer Science.

Demonstrator in Computer Science Department,
Faculty of Computer and Information Sciences,
Ain Shams University.

Under Supervision of

Prof. Dr. Taha El-Aref

Professor of Computer Science Faculty of Computer and Information Sciences, Ain Shams University.

Dr. Hossam M. Faheem

Associate Professor of Computer Systems
Faculty of Computer and Information Sciences,
Ain Shams University.

Cairo 2009

ABSTRACT

The revolution of new technologies and internet has motivated organizations expanding their networks to provide more services to customers and employees. Although the benefits gained, organizational assets become more vulnerable. Security become an important concern in today networked environments. As the underlying environments are complicated and dynamic, Security solutions should be flexible, scalable, and can integrate to achieve organizational security needs.

Policy-based management, as one of the latest approaches for network, distributed systems, and security management, ia promising solution for the security management problem. It introduces security policies as abstraction of the business needs away from security solutions that implement the business needs. Security policy specification, security policy configuration, security policies conflicts detection, policy enforcement, and deployment are critical issues that need to be clearly defined any policy-based management. With the increase of the organization scale, security officers exert more efforts to cover the organizational security needs and impact of changes in business objectives, hence come the need to automated security policy management system.

The Proposed framework is a new idea in automating the security policy management process. The framework is based on mobile agents. It provides an XML/Ontology-based standard security policy language (SSPL), architecture for deploying policies based on SSPL, security solutions integration interface, and a set of helping tools for specifying

and managing policies. The SSPL is aimed to be a standard, formal and readable security policy specification language. It helps in eliminating problems of writing security policies in natural languages or the developed security policy specification languages. The XML technology gives SSPL the formalization (in syntax) while ontology adds the semantics and analyzing capabilities to SSPL.

The proposed architecture simplifies/automates the mapping phase among security policies and security solutions by introducing abstraction tier between policy development tier and security solutions tier and using mobile agents for communication among them.

The proposed security solutions integration interface is a software driver that defines and manages how security solutions integrate with the proposed framework. It acts as a communication channel between the framework and the security solutions deployed.

The framework eliminates ambiguities of using natural languages in specifying security policies, eliminates the needs to learn many of the existing security policy specification languages to be able to specify the whole organizational security policies, eliminates difficulties associated with configuring heterogeneous security solutions, and automates the impact of the changes in security policies configurations. The framework is designed to be as flexible and extensible to cover new policies, new policy domains, and capable to integrate with new security solutions seamlessly.

ACKNOWLEDGMENT

I would like to express my gratitude to my supervisor Dr. Hossam M. Faheem whose expertise, understanding, and patience, added considerably to my experience and finishing this work. Also, my most profound gratitude goes to my family who has been the timeless source of inspiration for me; especially my great wife, to whom this thesis is dedicated.

TABLE OF CONTENTS

List of tables	i
List of figures	ii
List of symbols	iv
Chapter 1: Introduction	1
1.1 Security Policy Overview	3
1.1.1 Security policy Statement requirements	4
1.1.2 Security Policy and the Abstractions Levels	5
1.1.3 Security policy classification	6
1.1.4 Security policy related challenges	7
1.1.5 Security policy management lifecycle	9
1.1.6 Developing organizational security policies	10
1.2 Problem Definition	14
1.3 Requirements	16
1.3.1 Functional Requirements	17
1.3.1 Non-Functional Requirements	17
1.4 Motivation	17
1.5 Objectives	18
1.6 Thesis Outline	19
Chapter Summery	20
Chapter 2: Security Policy Management Related Work	21
2.1 Security policy specification approaches	21
2.1.1 "Non-Language based" policy specification approaches	22

2.1.2 "Language based" security policy specification approaches	on 24
2.2 Security policy management	40
2.2.1 Policy management architectures	40
Chapter Summery	43
Chapter 3: Multi-Agents Systems	44
3.1 Mobile agents	44
3.2 Why Mobile agents in security solutions?	46
3.3 The agent-oriented technology	47
3.3.1 Agent-oriented software engineering	48
3.4 Mobile agents standards	51
3.4.1 MASIF standards for agent development	52
3.4.2 FIPA standard for agent development	53
3.5 Agent-based programming languages and platforms	58
3.6 EtherYatri.NET framework	59
3.6.1 Features of EtherYatri.NET	59
3.6.2 EtherYatri.NET class library	60
3.6.3 EtherYatri.NET and FIPA	61
Chapter Summery	63
Chapter 4: The Proposed Multiagent-Based Framework	64
4.1 Technologies overview	64
4.2 The Proposed framework architecture	67
4.2.1 The core security policy tier	68

4.2.2 Communication between core policy tier and abstraction tiers	d core 75
4.2.3 The core abstraction (server) tier	78
4.2.4 Core security solutions tier	82
4.3 The framework agents	84
4.4 The framework deployment model	86
Chapter Summery	88
Chapter 5: The Proposed Standard Security Policy Language	89
5.1 Desirable characteristics of security policy language	90
5.2 The SSPL concepts overview	91
5.2.1 Why XML?	92
5.2.2 Why ontology?	93
5.3 The SSPL specifications	94
5.3.1 The SSPL syntax	95
5.3.2 The SSPL semantics	97
5.4 The SSPL engine	98
5.5 Examples on SSPL	101
5.6 The SSPL contributions and implementation	85
Chapter Summery	107
Chapter 6: Security policy management Case Studies	108
6.1 Intrusion detection policy case study	108
6.1.1 The working environment	108
6.1.2 Developing the Intrusion detection policy	109
6.1.3 Deploying the ESSIDS application	114

6.1.4 Reconfiguring the IDP	115
6.1.5 Conclusion	116
6.2 The mail server-DMZ case study	117
6.2.1 The working environment	117
6.2.2 Developing the Mail server policy	117
6.2.3 Conclusion	120
Chapter 7: Conclusion and Future work	121
7.1 Conclusion	121
7.2 Future Work	125
References	126

i

LIST OF TABLES

Number	Page
Table 3.1: The EtherYatri.NET class library classes	60
Table 4.1: The framework agents' description	85
Table 5.1: Password policy statement	101
Table 5.2: Remote access policy statement	103
Table 5.3: Comparison between security policy languages	106
Table 6.1: The specifications of the working environment	109

LIST OF FIGURES

Number	Page
Figure 1.1: A sample of security policy.	4
Figure 1.2: Security Policies Management Process	10
Figure 1.3: Steps to develop organizational security policies.	13
Figure 2.1: Policy research areas	21
Figure 2.2: CIM representations for a policy rule	24
Figure 2.3: The IETF policy enforcement architecture	40
Figure 3.1: The MaSE Methodology	49
Figure 3.2: Shows FIPA Main Architecture	53
Figure 3.3: The AMS Reference Model	54
Figure 3.4: The EtherYatri.NET Architecture	59
Figure 4.1: The proposed framework architecture	68
Figure 4.2: The core security policy tier structure	69
Figure 4.3: The core security policy layers	69
Figure 4.4: The Policy-Pad	71
Figure 4.5: The Security policy Definition Screen	71
Figure 4.6: The dynamic GUI engine	72
Figure 4.7: Sample of the Dynamic GUI Engine	73
Figure 4.8: Sample of the Dynamic GUI Engine output	75
Figure 4.9: The Security Policy Agent trips	78