IMMUNOHISTOCHEMICAL DETECTION OF A DNA REPAIR GENE PRODUCT AND A CELL CYCLE REGULATOR IN ORAL LICHEN PLANUS

Thesis
Submitted to the Faculty of Dentistry
Ain Shams University
In partial fulfillment of the requirements for the
Master degree in oral pathology

BY
Aiyah Abdel-Kader Ahmed Taha
(B.D.S)
Ain Shams University
2001

Faculty of Dentistry Ain Shams University 2009

Supervisors

Dr.Mohamed Salah El-Din Ahmed Ayoub

Professor of Oral Pathology And Vice Dean of Faculty of Dentistry Ain Shams University

Dr.Ihab Saeed Abdel-Hamid

Associate Professor of Oral Pathology Faculty of Dentistry Ain Shams University

Dr. Iman Mohamed Helmy

Associate Professor of Oral Pathology Faculty of Dentistry Ain Shams University

بسم الله الرحيم الرحيم

To the souls of my grandmas and grandpas, who have always dreamt of this day,

Hope I made your dream come true...

To my lovely parents, brother & sister Thank you for your constant inspiration and endless faith in me...

To my beloved husband, Ahmed, & coming baby,
Thank you for your support and patience...

To all who will read this one day and find it useful,

Thank you for your time and trust...

Acknowledgement

I would like to express my deep thanks to **Allah**, **the Most Compassionate**, **the Most Merciful**, for guiding me through this work and enabling me to accomplish it. May all the praise be to Allah.

Very special thanks to **Dr. Mohamed Salah El-Din Ayoub,** Professor of Oral Pathology and Vice Dean of Faculty of Dentistry-Ain Shams University, for his kind support, understanding, and encouragement.

My deep appreciation to **Dr. Adel Mohamed Abdel-Azim,** Professor of Oral Pathology and Head of the Oral Pathology Department, Faculty of Dentistry - Ain Shams University, for offering his knowledge and cooperation whenever needed, especially in the statistics part.

I am also deeply grateful to **Dr. Ihab Saeed Abdel-Hamid,** Associate Professor of Oral Pathology, Faculty of Dentistry - Ain Shams University, and to **Dr. Iman Mohamed Helmy,** Associate Professor of Oral Pathology, Faculty of Dentistry - Ain Shams University, for teaching me how to seek for perfection. Thank you for being always present in every step of my work.

My special thanks to Dr. **Marwa Mokbel El-Shafie**, Lecturer of Oral Pathology, Faculty of Dentistry - Ain Shams University, for her help and psychological support all through my work. Thank you for being there for me whenever I needed you.

I can't afford to forget to thank **Dr. Salwa Abu El-hana** - May Allah's mercy be on her soul, Former Professor of Clinical pathology, Faculty of Medicine - Ain Shams University, for her help & guidance in the beginning of my work.

My thanks also extend to all other members of the Oral Pathology Department for being such a co-operative and understanding team.

Table of Contents

List of Abbreviations	i
List of Figures	iii
List of Tables	v
Introduction and Review of Literature	
	1
Oral Lichen Planus	
• P16	
• Topoisomerase IIα	
Aims and Objectives	23
Materials and Methods	
Case Selection	
Histopathological examination	24
 Immunohistochemical methods 	
Reagents used	
The Immunostaining procedures	
Immunohistochemical Evaluation	29
• Assessment of the results	30
Statistical assessment	30
Results	
 Immunohistochemical and Image Analysis Results 	
P16	32
Topoisomerase IIα	35
Statistical results	37
 Correlation between p16 and Topoisomerase IIα 	
expression	41
Discussion	56
Conclusion.	78
Recommendations	79
Summary	80
References	
Arabic Summary	94

List of Abbreviations

C3: Complement 3

C4: Complement 4

CDK: cyclin-dependant kinase

CDKI: cyclin-dependant kinase inhibitor

CDKN2: cyclin-dependent kinase number 2 gene

CK-2: casein kinase II

CLD: Chronic liver disease

DAB: Diamino Benzidine

DNA: Deoxy-ribonucleic acid

Fas: Apoptosis-mediating surface antigen

Fas-l: Fas antigen ligand

G1 phase: gap1 phase of cell cycle

G2 phase: gap2 phase of cell cycle

HCV: hepatitis C virus infection

HDACs: histone deacetylases

HIER: heat induced epitope antigen retrieval

HPV: human papillomavirus

HRP: Horse Raddish Protein

ICAM-1: Inter-cellular adhesion molecule-1

IgM: Immunoglobulin M

INK4: inhibitor of cyclin-dependant kinase 4 family

INK4a/ARF: inhibitor of cyclin-dependant kinase 4 family/ alternate

reading frame tumor suppressor

KIP: kinase inhibitory protein

LC: Langerhan's Cell

LFA-1: Lymphocyte function-associated antigen-1

LOH: Loss of heterozygosity

LP: Lichen planus

M phase: mitosis phase phase of cell cycle

MMP: matrix metalloproteinase

MTS1: multiple tumor suppressor gene1

MTS1/CDK4I: multiple tumor suppressor gene1/ cyclin-dependant

kinase 4 inhibitor

NES: nuclear export signal

NLS: nuclear localization signal

NK: Natural Killer cell

NPC: nuclear pore complexes

OLP: Oral lichen planus

OPL: oral premalignant lesions

OSCC: oral squamous cell carcinomas

PBS: Phosphate buffered saline

pRb: retinoblastoma protein

R1: restriction point 1

RNA: ribonucleic acid

S phase: DNA synthesis phase of cell cycle

SCC: squamous cell carcinoma

SPSS: Statistical Package for Social Science

TNF- α: Tumor necrosis factor- alpha

TOP2A: human topoisomerase II α gene

TOP2B: human topoisomerase II ß gene

TopBP1: topoisomerase II beta binding protein 1

Topoisomerases: Topos

WHO: The World Health Organization

List of Figures

Fig.1: Overview of the cell cycle	10
Fig.2: The catalytic cycle of Topoisomerase II:	
the two-gate model	16
Fig.3: A plate showing the various steps	
for immunohistochemical evaluation of the OLP cases	31
Fig.4: A pie chart representing the cellular localization	
of immunohistochemical expression of p16 in OLP	34
Fig.5: A pie chart representing the cellular localization	
of immunohistochemical expression of topo IIα in OLP	37
Fig.6: A histogram showing the mean area fraction	
of immunopositivity for both p16 and topo II	
in reticular OLP	40
Fig.7: A histogram showing the mean area fraction	
of immunopositivity for both p16 and topo II	
in atrophic OLP	41
Fig.8: Scatter plot showing correlation and regression	
analysis for p16 vs. topo II α in OLP	45
Fig.9: Scatter plot showing correlation and regression	
analysis for p16 vs. topo II α in dysplastic cases of OLP	45
Fig.10: A photomicrograph of reticular non-dysplastic OLP	
showing immunopositive cells for p16 distributed all	
over the full thickness of the epithelium.	
(Original magnification x10)	46
Fig. 11: Higher magnification of the previous photomicrograph.	
Note the nuclear and cytoplasmic reaction.	
(Original magnification x 40)	46
Fig. 12: A photomicrograph of reticular non-dysplastic OLP	
showing immunopositive cells for p16. Note the	
immunopositivity in lymphocytes (red arrows).	
(Original magnification x20)	47
Fig. 13: Higher magnification of the previous photomicrograph.	
Note the cytoplasmic reaction (Original magnification x40)	47
Fig. 14: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for p16 distributed all over	
the full thickness of the dysplastic epithelium. (Original	
magnification x10)	48
Fig. 15: Higher magnification of the previous photomicrograph.	
Note the nuclear reaction. (Original magnification x 20)	48
Fig. 16: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for p16 distributed all over	

the full thickness of the epithelium. Note the cytoplasmic	
reaction (Original magnification x20)	49
Fig. 17: Higher magnification of the previous photomicrograph.	
Note the signs of dysplasia (black arrows) and the	
homogenous cytoplasmic reaction (red arrow).	
(Original magnification x 40)	49
Fig. 18: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for p16. Note the nuclear	
and the cytoplasmic reaction (Original magnification x20)	50
Fig. 19: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for p16. Note the cell	
membrane reaction (Original magnification x20)	50
Fig. 20: A photomicrograph of atrophic non-dysplastic OLP	
showing immunopositive cells for p16. Note both the nuclear	
and cytoplasmic reaction (Original magnification x40)	51
Fig. 21: A photomicrograph of atrophic dysplastic OLP	
showing immunopositive cells for p16. Note the cytoplasmic	
reaction (Original magnification x40)	51
Fig. 22: A photomicrograph of reticular non-dysplastic OLP	
showing immunopositive cells for topo IIα. Note the	
cytoplasmic reaction (Original magnification x20)	52
Fig. 23: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for topo IIα. Note the nuclear	
reaction (Original magnification x10)	52
Fig. 24: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for topo $II\alpha$.	
(Original magnification x20)	53
Fig. 25: Higher magnification of the previous photomicrograph.	
Note the granular cytoplasmic reaction.	
(Original magnification x 40)	53
Fig. 26: A photomicrograph of reticular dysplastic OLP	
showing immunopositive cells for topo IIα. Note the	
cell membrane reaction (Original magnification x20)	54
Fig. 27: A photomicrograph of reticular dysplastic OLP	
showing lymphocyte infiltration in-between the basal cells	
(Original magnification x40)	54
Fig. 28: A photomicrograph of atrophic non-dysplastic OLP	
showing immunopositive cells for topo IIα. Note the nuclear	
reaction (Original magnification x20)	55
Fig. 29: A photomicrograph of atrophic dysplastic OLP	
showing immunopositive cells for topo IIα. Note the cell	
membrane reaction (Original magnification x20)	55

List of Tables

Table 1: Criteria for case selection of OLP cases	24
Table 2: P16 immuno-expression in the clinical variants	
as well as in non-dysplastic/dysplastic cases of OLP	33
Table 3: Cellular localization of immunohistochemical	
expression of p16 in the epithelium of OLP	34
Table 4: Topo IIα immuno-expression in the clinical variants	
as well as in non-dysplastic/dysplastic cases of OLP	36
Table 5: Cellular localization of immunohistochemical	
expression of topo $II\alpha$ in the epithelium of OLP	36
Table 6: Descriptive statistics for p16 in the clinical	
variants of OLP	38
Table 7: T-Test for equality of means for p16 in reticular	
vs. atrophic variants of OLP	38
Table 8: Descriptive statistics for p16 in dysplastic	
vs. non-dysplastic cases of OLP	38
Table 9: T-Test for equality of means for p16 in dysplastic	
vs. non-dysplastic cases of OLP	39
Table 10: Descriptive statistics for Topo II α in the clinical	
variants of OLP	39
Table 11: T-Test for equality of means for Topo II α in reticular	
vs. atrophic variants of OLP	39
Table 12: Descriptive Statistics for Topo II α in dysplastic	
vs. non-dysplastic cases of OLP	40
Table 13: T-Test for equality of means for Topo II α in dysplastic	
vs. non-dysplastic cases of OLP	40
Table 14: Descriptive statistics for p16 vs. Topo II α in OLP	42
Table 15: Pearson correlation for p16 vs. Topo II α in OLP	42
Table 16: Descriptive statistics for p16 vs. Topo II α in reticular	
variant of OLP	43
Table 17: Pearson correlation for p16 vs. Topo II α in reticular	
variant of OLP	43
Table 18: Descriptive statistics for p16 vs. Topo II α in atrophic	
variant of OLP	43
Table 19: Pearson correlation for p16 vs. Topo II α in atrophic	
variant of OLP	43
Table 20: Descriptive statistics for p16 vs. Topo II α	
in non-dysplastic cases of OLP	44
Table 21: Pearson correlation for p16 vs. Topo II α	
in non-dysplastic cases of OLP	44

Table 22: Descriptive statistics for p16 vs. Topo II α in dysplastic	
cases of OLP	44
Table 23: Pearson correlation for p16 vs. Topo II α in dysplastic	
cases of OLP	44