GENETIC STUDIES ON SOME BACTERIAL HEAVY METAL RESISTANCE GENES

By

Amr Tag El-Din Mahmoud Sa'eb

B.Sc.Agric.Sci. (Genetics), Ain Shams University (1994)

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in

Agricultural Science (Genetics)

Genetics Department Faculty of Agriculture Ain Shams University

Approval sheet

GENETIC STUDIES ON SOME BACTERIAL HEAVY METAL RESISTANCE GENES

By

Amr Tag El-Din Mahmoud Sa'eb

B.Sc.Agric.Sci. (Genetics), Ain Shams University (1994)

This thesis for Master of Science degree has been approved by:

Prof. Dr. Ahmed Nagib E. Gouda...........
Professor of Genetics, Genetics Department, Faculty of Agric., Cairo University.

Prof. Dr. Abd El-Fattah A. Tayel.....

Professor of Genetics, Genetics Department, Faculty of Agric., Ain Shams University.

Prof. Dr. Samir A. Ibrahim......

Professor of Genetics, Genetics Department, Faculty of Agric., Ain Shams University. (Supervisor).

Date of Examination: / / 2000

GENETIC STUDIES ON SOME BACTERIAL HEAVY METAL RESISTANCE GENES

By

Amr Tag El-Din Mahmoud Sa'eb

B.Sc.Agric.Sci. (Genetics), Ain Shams University (1994)

Under the supervision of:

Prof. Dr. Ali Z. Abd El-Salam

Professor of Genetics, and head of Genetics Department, Faculty of Agric., Ain Shams University.

Prof. Dr. Samir A. Ibrahim

Professor of Genetics, Genetics Department, Faculty of Agric., Ain Shams University.

Prof. Dr. Mohamed S. Abd El-Salam

Professor of Microbial Genetics, Genetic engineering & Biotechnology Department, National Research Center.

ACKNOWLEDGEMENT

I wish to express my grateful thanks to Prof. Dr. Ali Z. Abd-El-Salam, Professor and Chairman of Genetics Department, Faculty of Agriculture, Ain Shams University, for supervision, energetic guidance, fruitful help and continuous encouragement, the laboratory facilities he kindly offered during the progress of the work and preparation and writing of the manuscript.

I would like also to express my deepest thanks and everlasting gratitude to Professor Dr. Samir A.. Ibrahim, Professor of Microbial Genetics and biotechnology, Genetics Department, Faculty of Agriculture, Ain Shams University, for his valuable efforts, supervision, untiring guidance, fruitful suggestions and constructing criticism during the progress of the study and preparing and writing the manuscript.

It is also great pleasure to express my deepest sincere appreciation and gratitude to Prof. Dr. Mohamed S. Abd-El-Salam, Professor of Microbial Genetics, Genetic Engineering and Biotechnology Department, National Research Center for suggesting the problem, supervising the work, offering the laboratory facilities and valuable efforts, guidance and suggestions during the progress of the work and preparing and writing the manuscript.

It is also great pleasure to express my deepest sincere appreciation and gratitude to Prof. Dr. Khalil El-Halafawy, Dean of Gentic Engineering and Biotechnology Research Institute for offering the laboratory facilities and fruitful help during the progress of the study.

Special thanks would be extended to all members of "ACGEB" and "GEBRI" for their support, encouragement and providing many facilitates.

ABSTRACT

Amr Tag El-Din Mahmoud Sa'eb, Genetic Studies on Some Bacterial Heavy Metal Resistance Genes. Unpublished Master of Science thesis. Genetics Department, Faculty of Agriculture, Ain Shams University, 2000.

Two hundred forty nine *Pseudomonas* isolates were collected from different geographical sites in Egypt. These isolates were examined for resistance against ten heavy metals and five antibiotics. Plasmid profile were studied for most of tested isolates. For further studies ten representative strains were chosen. They were resistant to seven to nine heavy metals and four to five antibiotics and bearing both small and large conjugative plasmids. They have stable, broad host range plasmids. Silver, nickel, cadmium, mercury, cobalt, chromium, copper, zinc, chloramphenicol, kanamycin, tetracycline, ampcillin and streptomycin resistance genes were plasmid borne, while lead and iron resistance genes were chromosome mediated.

Key words: *Pseudomonas*; heavy metals; antibiotics; resistance plasmid; curing; conjugation; broad host range; genetic stability.

Contents

	Page
NTRODUCTION	1
REVIEW OF LITERATURE	3
1. Heavy metals	3
2. Sources of metal contamination	4
3. Biological functions of heavy	5
metals	
3.1. Cobalt	5
3.2 Copper	5
3.3. Iron	5
3.4. Nickel	6
3.5. Zinc	6
3.6. Cadmium, chromium, lead, mercury and silver	7
4. Toxicity of heavy metals	7
4.1. Cadmium	7
4.2. Mercury	7
4.3. Silver	8
4.4. Chromium, cobalt, copper nickel and zinc	8
5. Plasmid	9
6. Plasmid mediated heavy metal resistance	9
6.1. Plasmid mediated cadmium resistance	9
6 2 Plasmid mediated chromate resistance	10
6.3. Plasmid mediated copper resistance	10
6 4 Plasmid mediated lead resistance	П
6.5. Plasmid mediated mercury and organomercurial resistance.	11
6.6. Plasmid mediated cobalt, nickel and zinc	12
resistance.	
6.7. plasmid mediated silver resistance	12
7. Conjugation as a tool of gene transfer in	
different environments	

Contents

INTRODUCTION REVIEW OF LITERATURE

- 1. Heavy metals
- 2. Sources of metal contamination
- 3. Biological functions of heavy metals
 - 3.1. Cobalt
- 3.2 Copper
- 3.3. Iron
- 3.4. Nickel
- 3.5 Zinc
- 3.6. Cadmium, chromium, lead, mercury and silver

4. Toxicity of heavy metals

- 4.1. Cadmium
- 4.2. Mercury
- 4.3. Silver
- 4.4. Chromium, cobalt, copper nickel and zinc
- 5. Plasmid
- 6. Plasmid mediated heavy metal

resistance

- 6.1. Plasmid mediated cadmium resistance
- 6.2. Plasmid mediated chromate resistance
- 6.3. Plasmid mediated copper resistance
- 6.4. Plasmid mediated lead resistance
- 6.5. Plasmid mediated mercury and organomercurial resistance.
- 6.6. Plasmid mediated cobalt, nickel and zinc resistance.
- 6.7. plasmid mediated silver resistance.
- 7. Conjugation as a tool of gene transfer in different environments

	Page
8. Microbe-metal interaction	14
8.1. Intracellular accumulation	14
8.2. Cell wall interaction	14
8.3. Siderophores	14
8.4. Extracellular-processes	15
8.5. Extracellular polymer-metal interaction	16
8.6. Volatilization of metal by transformation	16
9. Heavy metal resistance mechanisms in bacteria.	17
9.1. Cadmium resistance mechanism	18
9.2. Chromate resistance mechanism	20
9.3. Copper resistance mechanism	20
9.4. Mercury and Organomercurial resistance	
mechanims	22
9.4.1. Operon structure.	22
9.4.2. Transport.	23
9.4.3. Mercuric reductase and organomercruial	
layase.	23
9.5. Cobalt and nickel resistance mechanisms.	25
9.6. Lead resistance mechanism.	26
9.7. Silver resistance mechanism.	26
10. Heavy metal pollution as a national and	
agricultural problem.	27
11. Heavy metal and antibiotic resistance	
association	27

	Page
MATRIALS AND METHODS	30
1. Materials	30
1.1. Bacterial strains	30
1.1.1. Standard strains	30
1.1.2. Bacterial isolates	30
1.2. Microbial media	30
1.3. Stocks solutions and buffers	35
2. Methods	37
2.1. Bacterial isolation	37
2.2. Sensitivity of bacterial isolates to some heavy metals	
and antibiotics	38
2.3. Plasmid DNA isolation.	
2.3.1. Plasmid isolation procedure	39
2.3.2. Agarose gel electrophoresis	39
2.4. Plasmid DNA curing	39
2.4.1. Liquid medium curing method	40
2.4.2. Disk curing method	40
2.5. Conjugation experiments	40
2.5.1. Donors	40
2.5.2. Recipients	41
2.5.3. Isolation of, Pseuomonas fluorescence,	
Rhizobium sp. and cured donor isolates, rifamicin	
resistant strains	41
2.5.4. Conjugation procedure	41
2.6. Genetic stability	42
RESULTS AND DISCUSSION	43
1. Morphological, physioligcal and biochemical	
characterization of bacterial isolates	43

	Page
2. Minimum inhibitory concentration (MIC) of different	
heavy metals against Pseudomonas isolates.	45
3. Geographical distribution of bacterial heavy metal	
resistance.	48
4. Co-resistance among heavy metals	64
4.1. Co-resistance of zinc sulphate with other heavy	
metals	64
4.2. Co-resistance of mercuric chloride with other heavy	
metals	67
4.3. Co-resistance of silver nitrate with other heavy metals	67
4.4. Co-resistance of ferric chloride with other heavy	
metals	67
4.5. Co-resistance of nickel sulphate with other heavy	
metals	74
4.6. Co-resistance of lead acetate with other heavy	
metals	74
4.7. Co-resistance of potassium dichromate with other	
heavy metals	74
4.8. Co-resistance of cobalt chloride with other heavy	
metals	81
4.9. Co-resistance of cadmium chloride with other heavy	
metals	81
4.10. Co-resistance of cuppric chloride with other heavy	
metals	86
5. Heavy metal resistance patterns the	
Pseudomonas isolates.	93

	Page
6. Heavy metal resistance pattern of the ten selected isolates.	98
7. Antibiotic resistance pattern of the ten the selected strains.	98
8. Plasmid profile.	98
8.1. Plasmid profiles of the pseudomonas isolates .	98
8.2. Plasmid profiles of the ten selected strains.	102
9. plasmid DNA curing experiments.	106
10. Heavy metal resistance patterns of original and cured	
strains	110
11. Plasmid profile of the original and cured selected strains.	115
12. Antibiotic resistance patterns of the origenal and cured	
strains.	115
13. Conjugation experiments	120
13.1. Conjugation experiments between original and cured	
strains.	120
13.2. Transfer of heavy metal resistance gene(s) to	
Pseudomonas fluorescens ATCC17400 (Intrageneric)	124
13.3. Transfer of heavy metal resistance gene(s) to E.coli	
(Intergeneric)	124
13.4. Transfer of heavy metal resistance gene(s) to	
Rhizobium sp.	127
14. Genetic stability of heavy metal resistance	128
SUMMARY AND CONCLUSION	131
REFERENCES	135
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Page
1. Morphological, physilogical and biochemical	44
characterization of some selected isolates	
2. Heavy metal minimum inhibition concentration of	46
Pseudomonas sp.	
Geographical distribution of bacterial heavy metal resistance	49
4. co-resistance of zinc sulphate with other heavy metals	65
5. Co-resistance of mercuric chloride with other heavy metals.	68
6. Co-resistant of silver nitrate with other heavy metals.	70
7. Co-resistance of ferric chloride with other heavy metals.	72
8. Co-resistance of nickel sulphate with other heavy metals.	75
9. Co-resistance of lead acetate with other heavy metals.	77
10. Co-resistance of potassium dichromate with other heavy	79
metals.	
11. Co-resistance of cobalt chloride with other heavy metals.	82
12. Co-resistance of cadmium chloride with other heavy	84
metals.	
13. Co-resistance of cuppric chloride with other heavy metals.	87
14. Heavy metal resistance patterns of 249 Pseudomonas	94
isolates.	
15. Heavy metal resistance patterns of the ten selected isolates	100
16. Antibiotic resistance patterns of the ten selected isolates.	101
17. Plasmid profiles of the ten selected strains.	103
18. Curing efficiency of liquid method	107
19. Curing efficiency of disk method	108
20. Heavy metal resistance pattern of the original and cured strains.	111

Table No.	Page
21. Plamsid profile of the original and cured strains	112
22. Plasmid profile and heavy metal resistance pattern of	113
partially cured strain "24".	
23. Antibiotic resistance pattern of the original and cured strains	116
24. Heavy metal resistance patterns and plasmid profiles of	117
partially transconjugants of strain "24"	
25. Frequency of heavy metal resistance gene(s) transfer to	121
Pseudomonas fluroescens ATCC 17400 (Intrageneric	
transfer).	
26. Frequency of heavy metal resistance gene(s) transfer to	122
E.coli (Intergeneric transfer).	
	400
27. Genetic stability of heavy metals resistance of	129
Pseudomonas fluorescens ATCC17400 transconjugants.	
28. Genetic stability of heavy metals resistance of <i>E. coli</i>	130
transconjugants.	

LIST OF FIGURES

Figure No.		Page
Figure (1)	Heavy metal resistance percentages.	52
Figure (2)	Cadmium resistance percentages.	54
Figure (3)	Chromium resistance percentages.	55
Figure (4)	Cobalt resistance percentages.	56
Figure (5)	Copper resistance percentages.	57
Figure (6)	Iron resistance percentages.	58
Figure (7)	Lead resistance percentages.	59
Figure (8)	Mercury resistance percentages.	60
Figure (9)	Nickel resistance percentages.	61
Figure (10)	Silver resistance percentages.	62
Figure (11)	Zinc resistance percentages.	63
Figure (12)	Co- resistance of zinc sulphate with other heavy	66
	metals.	
Figure (13)	Co- resistance of mercuric chloride with other	69
	heavy metals.	
Figure (14)	Co- resistance of silver nitrate with other heavy	71
	metals.	
Figure (15)	Co- resistance of ferric chloride with other heavy	73
	metals.	
Figure (16)	Co- resistance of nickel sulphate with other	76
	heavy metals.	
Figure (17)	Co- resistance of lead acetate with other heavy	78
	metals.	
Figure (18)	Co- resistance of potassium dichromate with	80
	other heavy metals.	

Figure No. page