REMEDIATION OF SOIL CONTAMINATED WITH PETROLEUM HYDROCARBONS

Submitted By Amr Hamed Gouda Abd El Rahman

B.Sc. of (Mechanical Power), Faculty of Engineering , Banha University, 2006
 Diploma of Environmental Sciences, Institute of Environmental Studies & Research
 Ain Shams University, 2008

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science

Department of Environmental Engineering Science Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET REMEDIATION OF SOIL CONTAMINATED WITH PETROLEUM HYDROCARBONS

Submitted By

Amr Hamed Gouda Abd El Rahman

B.Sc. of (Mechanical Power), Faculty of Engineering , Banha University, 2006

Diploma of Environmental Sciences, Institute of Environmental Studies & Research Ain

Shams University, 2008

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Mohamed El-Sayed El-Nennah

Prof. of Soil and Water Faculty of Agriculture Ain Shams University

2-Prof. Dr. Tarek Ismail Sabry

Prof. of Sanitary and Environmental Engineering, Faculty of Engineering Ain Shams University

3-Prof. Dr. Hesham Ibrahim El-Kassas

Prof. of Soil & Water and Head of Department of Environmental Agriculture Science - Institute of Environemntal Studies & Research Ain Shams University

4-Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Associate Prof. and head of Department of Environmental Basic Science Institute of Environmental Studies & Research Ain Shams University

5-Dr. Ahmed Shafik El-Gendy

Associate Prof. in Department of Environmental Engineering Science Institute of Environmental Studies & Research
Ain Shams University

REMEDIATION OF SOIL CONTAMINATED WITH PETROLEUM HYDROCARBONS

Submitted By

Amr Hamed Gouda Abd El Rahman

B.Sc. of (Mechanical Power), Faculty of Engineering , Banha University, 2006

Diploma of Environmental Sciences, Institute of Environmental Studies & Research Ain

Shams University, 2008

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Environmental Engineering Science

Under The Supervision of:

1-Dr. Ahmed Shafik El-Gendy

Associate Prof. in Department of Environmental Engineering Science Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Hesham Ibrahim El-Kassas

Prof. of Soil & Water & Vice Dean of Institute of Environemntal Studies & Research Ain Shams University

3-Dr. Taha Abd El Azzem Mohamed Abd El- Razek

Associate Prof. in Department of Environmental Basic Science Institute of Environmental Studies & Research Ain Shams University

معالجة التربة الملوثة بالميدروكربوبات النغطية

رسالة مقدمة من الطالب

عمرو حامد جودة عبد الرحمن

بكالوريوس هندسة (ميكانيكا قوي) . كلية الهندسة . جامعة بنها . 2006 دبلوم في علوم البيئة . معهد الدراسات والبحوث البيئية . جامعة عين شمس . 2008

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

قسم العلوم الهندسية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

صفحة الموافقة على الرسالة محالجة التربة الملوثة بالميدروكربونات النخطية

رسالة مقدمة من الطالب

عمرو حامد جودة عبد الرحمن

بكالوريوس هندسة (ميكانيكا قوى) . كلية الهندسة . جامعة بنها . 2006

دبلوم في علوم البيئة . معهد الدراسات والبحوث البيئية . جامعة عين شمس . 2008

لاستكمال متطلبات الحصول على درجة الماجستير

فى العلوم البيئية

قسم العلوم الهندسية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة: التوقيع

C-1. أ/ محمد السيد الننه

أستاذ الأراضي. كلية الزراعة

جامعة عين شمس

C-2. آ/ طارق إسماعيل صبرى

أستاذ الهندسة الصحية والبيئية . كلية الهندسة

جامعة عين شمس

C-3. أ/ هشام إبراهيم القصاص

أستاذ بيئة التربة والمياه ورئيس قسم العلوم الزراعية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

4- آ./ طه عبد العظيم محمد عبد الرازق

أستاذ مساعد ورئيس قسم العلوم الأساسية البيئية . معهد الدراسات والبحوث البيئية جامعة عين شمس

5- آ./ أحمد شفيق الجندى

أستاذ مساعد بقسم العلوم الهندسية البيئية . معهد الدراسات والبحوث البيئية جين شمس

معالجة التربة الملوثة بالميدروكربونات النغطية

رسالة مقدمة من الطالب

عمرو حامد جودة عبد الرحمن

بكالوريوس هندسة (ميكانيكا قوي) . كلية الهندسة . جامعة بنها . 2006 دبلوم في علوم البيئة . معهد الدراسات والبحوث البيئية . جامعة عين شمس . 2008

> لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الهندسية البيئية

> > تحت إشراف:-

1- آ./ أحمد شفيق الجندي

أستاذ مساعد بقسم العلوم الهندسية البيئية . معهد الدراسات والبحوث البيئية جامعة عين شمس

C-2. آ/ هشام إبراهيم القصاص

أستاذ بيئة التربة والمياه ووكيل معهد الدراسات والبحوث البيئية جامعة عين شمس

3- آ./ طه عبد العظيم محمد عبد الرازق

أستاذ مساعد بقسم العلوم الأساسية البيئية . معهد الدراسات والبحوث البيئية جامعة عين شمس

ختم الإجازة:

أجيزة الرسالة بتاريخ / /2014

2014/ موافقة مجلس المعهد / 2014/ موافقة مجلس الجامعة

2014

Content

Title	page
1. INTRODUCTION	1
2. LITERATURE REVIEW	3
2.1.Overview of remediation techniques	3
2.1.1. In-situ remediation techniques	4
2.1.2. Ex-situ remediation techniques	4
2.1.3. Soil remediation processes	4
2.1.3.1 Physical/Chemical Treatment Technologies	4
2.1.3.2 Thermal Treatment Technologies	5
2.1.3.3 Biological Treatment Technologies	5
2.2.Fundamental principles of bioremediation mechanism	6
2.2.1. Microorganisms in soil	7
2.2.2. Role of microorganisms in bioremediation	8
process 2.3.Fundamental principles of phytoremediation mechanism	8
2.3.1. Direct degradation	9
2.3.2. Indirect degradation	10
2.4. Plant-bacteria remediation mechanism	11
2.5. Environmental factors affecting the remediation process	11
2.5.1. Microbial factors	11
2.5.2. pH value	12
2.5.3. Organic matter	13
2.5.4. Oxygen	13
2.5.5. Soil water content	13
2.5.6. Nutrients	14
2.5.7. Temperature	14
2.5.8. Soi1 structure	15
2.6.Effect of petroleum hydrocarbons on bacteria and plant	15

Title	page
2.7.Degradation pathway of petroleum hydrocarbon	16
2.7.1. Aliphatic Hydrocarbons	16
2.7.2. Aromatic hydrocarbons	17
2.8. Effect of phytoremediation on the environment	
3. MATERIALS AND METHODS	19
3.1. Experiment environmental conditions	
3.2. Soil used in the experiments	19
3.3.Plant used in the experiments	22
3.4. Bacteria used in the experiments	23
3.4.1. Bacteria selection	23
3.4.2. Bacteria isolation and identification	23
3.4.3. Bacterial culture incubation is soil samples	24
3.5. Preparation and characteristics of TPH contaminant	24
3.6. Experimental set up	27
3.7.Samples analyses	31
4. RESULTS AND DISCUSSION	34
4.1. Evaluation of remediation methods	34
4.1.1. Bioremediation	35
4.1.2. Phytoremediation	36
4.1.3. Plant-bacteria combination evaluation	38
4.1.4 Evaluation of control samples (natural degradation)	39
4.2. Comparison between remediation methods	40
4.3. Mass removal of TPH	45
4.4. Removal kinetics of TPH	48
4.5. Plants growth	54
4.6.Mechanism of TPH removal	55
5.CONCLUSION	58
6. Summery	60
7.REFERENCES	63

List of Tables

Table	Title	Page
Table.1	Characteristics of soil used in the experiments	20
Table.2	Medium Components Used for Isolation of Hydrocarbon Degrading Bacteria	24
Table.3	Petroleum hydrocarbons Contaminant characteristics	25
Table.4	Petroleum hydrocarbons Contaminant (Qualitative Analysis)	26
Table.5	Arrangement of samples and contamination levels	30
Table.6	Reaction rate constant (K) and regression coefficient (R ²) for various remediation methods	53
	101 failous remodiation memods	

List of Figures

Figure	Title	Page
Figure.1	Picture of gasoline tank and historical contaminated	19
	soil	
Figure.2	Picture of mixing of contaminated soil	21
Figure.3	Picture of pots arrangements	21
Figure.4	Picture of plant seeding	22
Figure.5	Picture of planted pots arrangement	23
Figure.6	Picture of pot used in experiments	27
Figure.7	Picture of blanked sample planted with alfalfa	28
Figure.8	TPH concentration during bioremediation process for	35
-	hydrocarbon contaminated soils	
Figure.9	TPH concentration during phytoremediation process	37
	for hydrocarbon contaminated soils	
Figure.10	TPH concentration during combined remediation	38
	process of bioremediation and phytoremediation for	
	hydrocarbon contaminated soils	
Figure.11	TPH concentration of control samples during	39
	remediation process for hydrocarbon contaminated	
F: 10	soils	42
Figure.12	TPH concentration during remediation process of	42
	hydrocarbon contaminated soils with initial	
E: 12	contamination 2.5%	42
Figure.13	TPH concentration during remediation process of hydrocarbon contaminated soils with initial	43
	hydrocarbon contaminated soils with initial contamination 5%	
Figure.14	TPH concentration during remediation process of	44
riguit.14	hydrocarbon contaminated soils with initial	77
	contamination 10%	
Figure.15	TPH mass removal regarding the control sample	45
8	concentration of hydrocarbon contaminated soils	
Figure.16	TPH mass removal regarding the control sample	46
-9	concentration of hydrocarbon contaminated soils	
Figure.17	TPH mass removal regarding the control sample	47
8	concentration of hydrocarbon contaminated soils with	
Figure.18	change in relative concentration (lnC) with time to	49
	obtain reaction rate constant (K) for phytoremediation	
	for initial contamination levels of 2.5%, 5% and 10%	

List of Figures

Table	Title	Page
Figure.19	change in relative concentration (lnC) with time to obtain reaction rate constant (K) for bioremediation for initial contamination levels of 2.5%, 5% and 10%	50
Figure.20	change in relative concentration (lnC) with time to obtain reaction rate constant (K) for combination between phytoremediation and bioremediation for initial contamination levels of 2.5%, 5% and 10%	51
Figure.21	change in relative concentration (lnC) with time to obtain reaction rate constant (K) for control samples for initial contamination levels of 2.5%, 5% and 10%	52
Figure.22	plant dry weight at the end of experiments (90 days)	54
Figure.23	plant length after 90 days of experiments	55

ACKNOWLEDGEMENT

I am grateful for the assistance that I have received from my supervision committee *Dr. Ahmed El-Gendy, Dr. Hesham El-Kassas* and *Dr. Taha Abdul-Alazeim* to help me reach this great accomplishment for their patience, encouragement, and confidence in me. Thanks also to *Dr. Ahmed Abd El-Wahab* for assistance and support.

I would like to acknowledge my company (Petrobel) support for studies & researches.

Thanks for the contribution and assistance of the personnel in Belayim Petroleum Company at Port-Fouad Gas Fields, Port-Said, especially my colleagues Y. El-Wahsh & A. Ali for their effort in the field experiments and A. M. Badran & Maghraby for lab assistance and all who helped in producing this research work.

ABSTRACT

Soil mineral oil contamination causes many problems for the surrounding environment. Many methods are carried out to treat oil contaminated soil however ex-situ or in-situ. Phytoremediation and bioremediation are in-situ remediation methods that are less expensive and less disruptive than ex-situ approaches.

In this work, phytoremediation using alfalfa, bioremediation using *Pseudomonase putida* and a combination were investigated as in-situ remediation options for sandy soil contamination with petroleum hydrocarbons. Sandy soil samples and hydrocarbon contaminants were collected from a gas production plant located in Port-said city. The levels of hydrocarbon contamination in soil were 2.5%, 5% and 10%. All experiments were carried out in pots. The remediation efficiency was evaluated with time by the quantitative analysis of total petroleum hydrocarbons (TPH) concentration in soil throughout the experiments after 15, 30, 60, and 90 days from the start of the experiments.

Results showed that the ability of the used methods to reduce hydrocarbon concentrations from soil for all concentrations of contamination compared to control samples during 90 days or less of the remediation processes. The different treatments were able to reduce the level of contamination in the sandy soil with efficiencies up to a maximum of 99.9% for phytoremediation, 98.7% for bioremediation, and 99.0% of combination method, for TPH initial contamination of 5%, 10%, and 2.5% (w/w) respectively.

1) Introduction

Petroleum hydrocarbons are naturally occurring chemicals used by humans for a variety of activities.

Natural gas, crude oil, tars and asphalts are types of petroleum hydrocarbons ultimately composed of various proportions of alkanes, aromatics, and polycyclic aromatic hydrocarbons.

Petroleum hydrocarbons comprise a diverse group of chemicals with variable physical and chemical characteristics. They are often divided into two main categories: gasoline range organics (GRO) and diesel range organics (DRO). The characteristics of petroleum range from moderately hydrophobic low-molecular weight to hydrophobic high-molecular-weight compounds.

Soil hydrocarbons contamination has become a global environmental problem, with a wide variety of contributing sources, and it takes place from many sources such as production, transportation pipelines, tankers, refineries, storage tanks, and accidents. **U.S. EPA** (1988) reported that 75% of 2 millions underground storage tanks are leaking significantly.

Many oil spill disasters all over the world result in contamination of soil with petroleum hydrocarbons over long areas that caused dangerous effect on the ecological system such as the oil spill during Iraqi-Kuwait war in 1991, **UNEP (1993)** reported that about 16 km² of Kuwait desert were contaminated with 25-50 million barrels.

Exposure of organisms to various concentrations of hydrocarbons contaminated soilresponses results in bad effects ranged from simple bioaccumulation up to death of biota. Hydrocarbon contaminated soil causes hazard and physiological damage in exposed animals.

It is now widely recognized that soil contamination with petroleum hydrocarbons is a potential threat to human health that forced the efforts in the last centuries to find efficient, low cost and environment friendly techniques for soil remediation.

Phytoremediation and bioremediation are promising in-situ methods for the degradation of hydrocarbons in soil that are efficient, cost-effective, and environment friendly technologies.

Although phytoremediation requires longer time than other technologies, it is considered a cost effective strategy with many positive environmental effects for remediation of hydrocarbons contaminated soils if imminent pathways for human exposure and risk are not an issue.

The current research aims at studying the performance of different insitu remediation methods for the removal of total petroleum hydrocarbons (TPH) from sandy soil at different levels of contamination. These methods include remediation using plant, bacteria or plant and bacteria.