

Ain Shams University Faculty of Engineering Structural Department

Value Engineering Modeling in Administrative Buildings

A Thesis Submitted to the Faculty of Engineering in Partial Fulfillment of requirements for the degree of Master of Science in Construction Project Management

Presented by

Hossam El Din Mohamed Bahaa

Under Supervision of

Prof. Dr.Ibrahim Abdel Rashid Professor, Structural Engineering Department, Faculty of Engineering, Ain Shams University

Dr. Mohamed El-Mikawi Associate Professor, Structural Engineering Department, Faculty of Engineering, Ain Shams University

Cairo, Egypt

2011

جامعة عين شمس كلية الهندسة قسم الهندسة الأنشائية

إستخدام هندسة القيمة في عمل نماذج لإختيار بدائل إنشائية للمباني الإدارية

خطة بحثية مقدمة كجزء من متطلبات الحصول على درجة الماجستير

فی

هندسة إدارة مشروعات التشييد

مقدم من

حسام الدين محمد بهاء

تحت إشراف

أ. د / إبراهيم عبدالرشيد نصير

أستاذ إدارة مشروعات التشييد _ قسم الهندسة الإنشائية كلية الهندسة _ جامعة عين شمس

د / محمد أحمد فؤاد المكاوى

أستاذ مساعد إدارة مشروعات التشييد - قسم الهندسة الإنشائية

كلية الهندسة _ جامعة عين شمس

القاهره ٢٠١١

Abstract

The Construction Industry is considered a major sector that plays a vital role in the economic growth of nations. However, inherently construction projects incur risks of cost and time overruns impacting both budgets and delivery dates. Value Engineering is considered an important tool, if properly used, will counter these inherent construction risks without jeopardizing project functions.

The objective of the research is to develop a Value Engineering Model which can be used as a tool to achieve the best return on investment for structural building systems. The research demonstrates that the newly developed model is deployed in the value engineering study. It furthermore presents an evaluation and assessment of current Value Engineering practices for the construction industry in Egypt, by Investigates current Value Engineering practices.

The research provides substantially comprehensive sequenced models that combine and consolidate the value engineering phases into a practical and applicable set which facilitate and promote the implementation of the Value Engineering study. The main contribution of this research is "The Function Based Breakdown Structure (FBBS)" that can be used to analyze and classify the functions of the detailed components into Basic, Secondary and Required Secondary functions associated to its costs. This will enable management to further examine the possible consequences and the impacts that may occur from eliminating the secondary functions and determine other ways or alternatives to achieve the project objectives with respect to its constraints (Function, Time, Cost and Quality).

The construction of an office building is used as a case study to validate the research by selecting the optimum structural system utilizing the developed Value Engineering Model. A Questionnaire is used to understand the current applications of Value Engineering, what is the category level of the organizations that are concerned to apply value engineering.

Finally, an assessment is made identifying problems hindering the use of Value Engineering methodologies and means of activating proper processes and scientific procedures in the Egyptian engineering and construction sector.

Keywords

Construction Industry, Value Engineering Phases, New VE Model, Structural System, Office Building, Function Breakdown.

Acknowledgement

First and foremost I offer my sincerest gratitude to my supervisors Prof. Dr. Ibrahim Abdel Rashid and Dr. Mohamed El Mikawi for their support throughout my thesis. I attribute the level of my Masters degree to them for encouragement and effort they had afforded to me, without them this thesis would not have been completed or written. One simply could not wish for better supervisors.

I would like to thank Prof.Dr. Mohamed Ismail Amer from Zgazig University for taking time out from his busy schedule to serve as my external reader.

Very special thanks go out to Prof.Dr. Ahmed Sherief Essawy for his Knowledge and experience.

I also give many thanks for all participants in the questionnaire survey (Consultants, Project Management Offices, Contractors and Owners).

Finally, I would like to thank my family for their support, patience and assistance they had gave to me.

Table Of Contents

Chapter 1 - Introduction	
1.1 General	1
1.2 Problem Statement	3
1.3 Methodology	3
1.3.1 Main Objective	
1.3.2 Supporting Objectives	4
1.4 The literature review	4
1.4.1 Need for Value Engineering	5
1.4.2 Early work of Value Engineering	. 5
1.5 The Value Engineering Methodology	
1.6 Practical application	7
1.7 Research Structure & Methodology	7
Chapter 2 - Administrative Buildings	
2.1 Architectural attributes	9
2.1.1 Types of Spaces	9
2.1.1.1 Offices	9
2.1.1.2 Employee/Visitor Support Space	9
2.1.1.3 Operation and Maintenance Spaces	9
2.1.2 Important Design Considerations	9
2.1.2.1 Cost-Effectiveness	. 9
2.1.2.2 Functional and Operational Considerations.	10
2.1.2.3 Flexibility	10
2.1.2.4 Urban Planning	10
2.1.2.5 Productivity Environment	11
2.1.2.6 Technical Connectivity	12
2.1.2.7 Security and Safety	12
2.1.2.8 Sustainability	13
2.1.2.9 Modernization	13
2.1.3 Space Attributes	13
2.1.3.1 Introduction	14
2.1.3.2 Accounting for Functional Needs	14
2.1.3.3 Ensuring Appropriate Systems Integration	14
2.1.4 Meeting Performance Objectives	14
2.1.4.1 Relationship of Function, Operation and Co.	st. 15
2.2 Structural Engineering Systems	15
2.2.1 Introduction	16
2.2.2 Considerations	16
2.2.2.1 Flexibility	17
2.2.2.2 Material Delivery and Construction Timing.	18
2.2.2.3 Ease of Construction and Schedule	18

	2.2.2.4	Cost of the Selected System	18
	2.2.2.5	Cost Impact on other systems	18
	2.2.2.6	Appearance and Aesthetics	18
2.	2.3 Structu	rral System Types	18
	2.2.3.1	Concrete Foundation Systems	18
	2.2.3.2	Structural Stud	21
	2.2.3.3	Bearing Wall and Concrete Plank	21
	2.2.3.4	Steel and Concrete Plank	21
	2.2.3.5	Steel and Poured-Concrete Deck	23
	2.2.3.6	Precast Concrete	23
	2.2.3.7	Beam-and-Slab	24
	2.2.3.8	Flat-Slab	24
	2.2.3.9	Post-Tensioned Concrete Slab	24
Chap	ter 3 - Val	lue Engineering Fundamentals	
			26
		eering Terminology	26
		on	26
			26
3.3 Pr	inciples of	Value Engineering	27
		iction	27
3.	3.2 Value	Engineering concepts	28
		l Objectives of Value Engineering	28
3.4 Fi	rst steps of	f Value Engineering	29
		action	29
		Engineering milestones	30
3.	4.3 SAVE		30
3.5 D	evelopmen	t of Value Engineering	31
3.	5.1 Introdu	iction	31
		development of the Value Engineering	32
3.	5.3 Who in	ifluence the costs?	32
3.6 F	eatures of	the Value Engineering	34
3.	6.1 Introdu	iction	34
3.	6.2 Meetin	g project value objectives	38
3.	6.3 The rea	asons for unnecessary cost	39
		to apply Value Engineering	41
		Selecting When to Conduct Value Engineering	
	udy		44
3.	7.1 Efforts	conducted in Value Engineering	45

3.7.2 The impact of decision makers	47
3.8 What Value Engineering is or is not	50
3.8.1 What Value Engineering is	50
3.8.2 What Value Engineering is not	50
Chapter 4 - The Value Engineering Frame Work	
4.1 Introduction	51
4.2 Function	53
4.2.1 Establishing Function Worth	53
4.2.2 Selecting Functions for Study	53
4.3 Defining quality as part of value	53
4.3.1 Value managing quality to deliver best value	54
4.4 The Value Management Hierarchy	56
4.5 Life Cycle Cost	58
4.5.1 Introduction	58
4.5.2 Definition of Life cycle cost	59
4.6 Life Cycle Costing Guidelines	59
4.6.1 The Economic Analysis Concept	60
4.6.2 Cost Elements	62
4.6.2.1 Initial Costs	62
4.6.2.2 Annual Recurring costs	62
4.6.2.3 Nonrecurring Cost	62
4.7 Value Engineering application to Risk	63
4.7.1 Risk – Value Relationship	63
4.7.2 Distinct stages of Risk management	64
4.7.2.1 Risk identification	64
4.7.2.2 Risk analysis	64
4.7.2.3 Risk response	65
4.7.2.4 Risk register and action planning	65
4.7.2.5 Change management	66
4.8 Value Engineering in FIDIC	67
Chapter 5 - The Job Plan	
5.1 Introduction	69
5.2 Pre-study	70
5.3 Workshop	70
5.2.1 Information Phase	70
5.3.2 Function analysis Phase	74
5.3.2.1 Function analysis steps	74
5.3.2.2 Determine functions	74

5.3.2.	4 Categorizing Functions
	5 Function Analysis System Technique
	(FAST Diagram)
5.3.3 Creative	ity phase
	Creative Concepts
5.3.3.2	
	ion phase.
	pment phase
•	entation
3.4.1 Impiem	
Chapter 6 - Fun	ction Based Breakdown Structure (FBBS)
	Duscu Dreumue (1 DDs)
	· · · · · · · · · · · · · · · · · · ·
	n Analysis
	reakdown structure (WBS)
	Definitions
	relationships
	m & WBS
_	ed Breakdown Structure (FBBS)
	FBBS
11.	ation of FBBS Model
	ly FBBS
6.8 Supporting IN	leeds to apply FBBS effectively
Chapter 7 - Cas	e Study
-	
	ves
	eparation
•	Model
	odel
	hases
	Information Phase
7.3.3.2	Function analysis Phase
7.2.2.2	7.3.3.2.1 Cost / Worth
7.3.3.3	Creativity Phase
7.3.3.4	
7.3.3.5	Development Phase

Chapter 8 - The Value Engineering Application Investigation	
8.1 Introduction	122
8.2 Methodology	122
8.3 The Questionnaire Goals	122
8.4 Design Sample Size	122
8.5 Data Collection	125
Chapter 9 - Conclusions & Recommendations 9.1 General	136
±	126
9.2 Research Conclusions	136
9.3 General Conclusions from Survey Results	137
9.4 Recommendations	138
9.5 Recommendations for Future researches	139
9.6 General Recommendations	139

List of Figures

Chapter 1		
Figure (1-1)	Research Structure & Methodology	8
Chapter 2		
Figure (2-1)	Deep foundation installation	20
Figure (2-2)	Steel and Concrete Plank	22
Figure (2-3)	Precast Concrete	23
Figure (2-4)	Prestressed and Post-Tensioned Concrete	25
Chapter 3		
Figure (3-1)	Who influence the costs	33
Figure (3-2)	Decision making team	36
Figure (3-3)	Responsibility Assignment Matrix	37
Figure (3-4)	When to apply Value Engineering	42
Figure (3-5)	Cost of changes	43
Figure (3-6)	The potential benefits	44
Figure (3-7)	Efforts conducted in Value Engineering	46
Figure (3-8)	Who are decision makers	47
Figure (3-9)	The impact of decision makers	48
Figure (3-10)	Decisions influence	49
Chapter 4		
Figure (4-1)	Value Engineering Integration into Design	52
Figure (4-2)	Maslow's individual hierarchy	56
Figure (4-3)	Value Engineering hierarchy	57
Figure (4-4)	The Economic life span	61
Chapter 5		
Figure (5-1)	The Job plan	69
Figure (5-2)	Value Engineering phases	72
Figure (5-3)	Pareto Law	73
Figure (5-4)	FAST Diagram	76
Figure (5-5)	Stimulus for other ideas	78
Chapter 6		
Figure (6-1)	Work breakdown structure (WBS)	84
Figure (6-2)	Schedule activities	86
Figure (6-3)	Function Based Breakdown Structure (FBBS)	89
Figure (6-4)	FAST Diagram for RC Foundations	92
Figure (6-5)	FBBS Model	93
Figure (6-6)	Schedule activities for Arc. Works	96
Figure (6-7)	FBBS Model for Arc. Works	97

List of Figures Continued

Chapter 7		
Figure (7-1)	Quality Model	101
Figure (7-2)	Cost Model	102
Figure (7-3)	Fast Diagram	104

List of Tables

Chapter 7		
Table (7-1)	Function Classification	105
Table (7-2)	Cost Worth Model	106
Table (7-3)	FBBS PC Footings	107
Table (7-4)	FBBS RC Footings	108
Table (7-5)	Screening ideas model	110
Table (7-6)	(QBS) for foundations	111
Table (7-7)	(QBS) for columns	112
Table (7-8)	(QBS) for slabs	113
Table (7-9)	Advantages and disadv. of shallow foundations	114
, ,	Advantages and disadv. of raft foundations	115
` /	Advantages and disadv. of columns	116
	Advantages and disadv. of steel frames	117
	Advantages and disadv. of flat slabs	118
	Advantages and disadv. of ribbed	119
Table (7-15)	Advantages and disadv. of post-tensioned slabs	120
Table (7-16)	Life Cycle Cost Summary	121
Chapter 8		
	Sample Size	124
Questionnaire	Histograms	125-135
References		
I Books		140
		141
	Dissertations	142
IV Web Pag	ges	142
Appendices		
Appendix A: Research Questionnaire		
Appendix B: Survey Data Sheets		
Appendix C:	VE Modeling Forms	C1-C30
Appendix D:	Present Worth Tables	D1-D5

1.1 General

The Egyptian Market is considered one of the most promising and hopeful markets in recent years. Despite the current global financial crisis, practitioners confirm that "Egypt" is becoming one of the major focal points and one of the most attractive markets in the Middle East and the North African region for the next years. This remains the case even after the January 2011 events and expected changes.

Investor sentiment in real-estate in Egypt is increasing. According to Jones Lang LaSalle's Real-Estate Investor Sentiment Survey released in April 2010 ' Egypt is now second only to Saudi Arabia. Egypt has a large and rapidly growing population, a growing economy, high regional demand and an increasing supply of premium commercial property. All real estate sectors are in the upturn stage of the property market cycle. There is strong demand, and the expectation of further rental and price growth in 2010 and beyond. [42]

Despite the global economic downturn, the real estate market in Egypt has remained largely stable. Demand for real estate in Cairo is expected to continue rising, but at a lower rate than in 2006-2008, when overoptimistic speculation and the search for yields took over. Demand in the Cairo market is cash-driven and directed by the enduser, as opposed to being mortgage-dependent and/or speculative. In the office and retail sub-sectors, rents and capital values have been increasing during the year across five provinces (Cairo, Alexandria, 6th of October City, New Cairo and Giza), as yields have fallen. In the less active industrial sub-sector, rents and yields have shown little movement.

There has been a significant increase in the supply of commercial property, including new city developments to the east and west of Cairo, as well as projects in Cairo. This activity is rectifying the long-standing problem of under development in these areas. Demand is on the increase as more western multinational companies set up bases in Egypt, and as more Middle Eastern companies relocate to Egypt, often because of adverse conditions in other regional countries, such as Dubai and Lebanon. As a result, market conditions are dynamic. Vacancy rates are generally low or falling.

The office and retail sub-sectors can expect double-digit increases in rentals in 2011, with smaller increases over the following years.

The Egyptian economic growth was 4.7% in FY09/10. In 2010/11 this will rise slightly to 4.9%. In 2011- 2014, growth forecast exceeds 6%. It is expected that the Egyptian government will continue to assist the economic recovery by maintaining an expansionary fiscal policy. While the fiscal deficit will widen in absolute terms in the short term, over the longer term, the fiscal position will improve after a slowdown in spending, outpaced by the growth rate recorded by revenues. [43]

Legislation of a special law in Egypt that allows foreigners to own and possess land, housing units and buildings (Law 56 for 1988) was a crucial event that helped in attracting foreign investors. As a consequence of these rules and regulations, the Egyptian governments favorably advocate to defeat obstacles, barriers and to facilitate routine procedures, which previously were considered as the most negative obstructions toward the direction of investment in Egypt. [44]

Furthermore, some of the subsidiary laws were issued to captivate investors, assisted them to create the kind of assurance and provide confidence for both the Arab investors and foreign alike, which had a significant outcome in investing billions of dollars in the Egyptian economy. Therefore, due to the necessity for these enormous entities and popular names in all different industries to be as close as possible to its investment, whether it is in construction or communications, petrochemicals, infrastructure, etc.....

Utilizing properly planned and dedicated commercial office space instead of mixing commercial, retail and residential space reflects civilized growth of any country all over the world, and consider the most perceivable indicator of economical, cultural, social, technological, and financial progress. Administrative Buildings are the most tangible reflection of a profound change in employment patterns that has commonly taken place over the last ten years in Egypt.

According to many of statistics, the life-cycle cost distribution for a typical service organization is about 3 to 4 % for the facility, 4 % for