Detection of Entamoeba histolytica and Giardia lamblia in cases of diarrhea among children and adults

Thesis submitted in partial fulfillment of M.Sc. degree of Parasitology

By

Abeer said Abd El-ghany El-Antably

(M.B.BCh.)

Supervised by

Prof. Dr. Hoda Abd El-Migid El-Boulaki

Professor of Parasitology Faculty of Medicine Cairo University

Prof. Dr. Jomana Abd El-Aziz Ahmed

Professor of Parasitology Faculty of Medicine Cairo University

Dr. Mayssa Mohamed Zaki Ibrahim

Lecturer of Parasitology Faculty of Medicine Cairo University

2007

Abstract

Entamoeba histolytica and Giardia lamblia are very important causes of diarrhea due to parasitic diseases. Their prevalence varies in different areas of the world. In the present study, a trial to evaluate the role of both organisms in cases of diarrhea among children and adults was conducted. An enzyme-linked immunosorbent assay (ELISA) was used for detection of Entamoeba species and compared it with microscopic examination. Regarding Entamoeba direct wet examination was positive in 21.1% of samples, concentration method was positive in 22.2% and ELISA was positive in 16.7%. Sensitivity of ELISA was found to be 72.2% and specificity was found to be 97.2%. So, it was found that ELISA is a more specific test than a sensitive test. Direct examination for Giardia lamblia gave positive results in 12.4% of samples and 14.4% by concentration method. ELISA test is expensive compared to the conventional microscopic examination, but, it yields objective results and do not require experienced microscopists so can be recommended for survey studies.

<u>Key words:</u> Entamoeba histolytica / Entamoeba dispar antigen – Giardia lamblia - microscopy - ELISA.

Acknowledgment

First of all I would like to thank **Prof. Dr. Olfat Mahmoud Al-Matarawy**, head of the Parasitology department, Cairo University. Her encouragement, support and advice were always a motivator to me.

I have the honor to present this work under the supervision of **Prof. Dr. Hoda Abd El-Migid El-Boulaki,** professor of Parasitology, Cairo University. Without her guidance, her support and her creative spirit I could never carry on doing the present work. I am proud to have her as my main supervisor.

I feel grateful to **Prof. Dr. Jomana Abd El-Aziz Ahmed,** professor of Parasitology, Cairo University. Her support, patience and guidance were the corner stone for completion of the present work.

Also, I am very lucky to have **Dr. Mayssa Mohamed Zaki Ibrahim,** Lecturer of Parasitology, Cairo University supervising this thesis. Without her meticulous supervision and sincere devotion the present work couldn't be accomplished.

I am extremely obliged to **Prof. Dr. Hoda Helmy Al-Rahimy,** professor of Parasitology, Cairo University for her precious help and for the valuable time and effort she gave me.

I owe a lot to **Dr. Hagar Abd El-Hameed Shaheen,** Lecturer of Parasitology, National Hepatology and Tropical Medicine Institute, for her sincere help and advice during the present work.

I also thank all the staff colleagues and members of Parasitology department, Cairo University for their appreciated help and support during the present work.

I want to thank my guiding light, my **father**, for his never-ending support and ever-lasting care. Without his support I would never made any achievement in my whole life.

Last but not least, I owe much to my **husband** and **my family** for their endless advice, help, care and support that I appreciate so much.

List of figures

Figure 1	Entamoeba histolytica trophozoite with a progressive pseudopod stained with trichrome stain.	Page 10
Figure 2	<i>Entamoeba histolytica</i> trophozoite with an ingested RBC stained with toluidine blue.	Page 11
Figure 3	Entamoeba histolytica trophozoite with six ingested RBCs in the focal plane stained with toluidine blue.	Page 11
Figure 4	Entamoeba histolytica cyst showing chromatoid bodies with bluntly rounded ends stained with trichrome stain.	Page 11
Figure 5	Entamoeba histolytica cyst showing chromatoid body with bluntly rounded ends stained with trichrome stain.	Page 11
Figure 6	Giardia lamblia Trophozoite cross section by E/M. A cross-sectional view of a trophozoite demonstrates the nuclei (N), flagella (F), vacuoles (V), and endoplasmic reticulum (ER).	Page 14
Figure 7	Giardia lamblia trophozoite stained with trichrome stain.	Page 14
Figure 8	Giardia lamblia cyst stained with trichrome.	Page 15
Figure 9	Close-up of the ventral disk by E/M. A magnified view of the ventral disk shows the microtubules (MT) and microribbons or dorsal ribbons (DR).	Page 16
Figure 10	Life cycle of Entamoeba histolytica.	Page 19
Figure 11	Life cycle of Giardia lamblia.	Page 20
Figure 12	Giardia Trophozoite Undergoing Division.	Page 21
Figure 13	Giardia trophozoite emerging from cyst.	Page 21
Figure 14	Gross pathology of intestinal specimen from a patient with acute amebic colitis.	Page 23
Figure 15	Colonic ulcers from a patient with amoebiasis.	Page 23
Figure 16	Experimental intestinal amoebiasis in the guinea pig. An invading <i>Entamoeba histolytica</i> trophozoite proceeds through the interglandular epithelium.	Page 25
Figure 17	Cross-sectional view of a colonic ulcer showing the "flask" shape.	Page 26
Figure 18	Scanning electron micrographs of experimental intestinal amoebiasis in the guinea pig.	Page 27
Figure 19	Giardia lamblia trophozoite between the small intestinal villi.	Page 32
Figure 20	Upper picture shows normal small intestine villi, lower picture shows villus atrophy due to <i>Giardia</i> infection.	Page 33
Figure 21	Drawing of intestinal Entamoeba spp. (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba coli and Entamoeba hartmani) showing different morphological features	Page 41

Figure 22	Entamoeba histolytica trophozoite in wet mount with single nucleus.	Page 42
Figure 23	Entamoeba histolytica / dispar cyst in wet mount with three visible nuclei.	Page 42
Figure 24	Entamoeba histolytica / dispar cyst in wet mount with one visible nucleus and a glycogen vacuole.	Page 42
Figure 25	Entamoeba histolytica / dispar cyst in iodine with one visible nucleus and a glycogen vacuole.	Page 43
Figure 26	Entamoeba histolytica / dispar cyst in iodine with two visible nuclei and a chromatoid body.	Page 43
Figure 27	Entamoeba histolytica trophozoite stained with trichrome stain.	Page 46
Figure 28	CT image of hepatic amebic abscesses.	Page 56
Figure 29	CT showing enhancing lobulated lesion with surrounding edema and midline shift. A case of cerebral amoebiasis.	Page 56
Figure 30	Giardia lamblia cyst stained with iodine.	Page 57
Figure 31	Giardia lamblia trophozoites stained with toluidine blue.	Page 58
Figure 32	Detection of cysts of <i>Giardia lamblia</i> by Immunofluorescent Microscopy (FITC), 400X, in human feces.	Page 60
Figure 33	Specimen sheet.	Page 74
Figure 34	Pattern of examination of slides by direct wet method.	Page 76
Figure 35	Compound microscope containing 4X, 10X, 40X and 100X (oil immersion) lenses used for examination of specimens.	Page 76
Figure 36	Centrifuge apparatus used in both concentration method and in preparation of specimens for ELISA.	Page 78
Figure 37	Formalin-Ethyl Acetate Sedimentation Concentration method [A] Shows straining of stool-formalin mixture through double layer of gauze. [B] Shows four layers resulted after centrifugation: a small amount of sediment (containing the parasite) in the bottom of the tube (S); a layer of formalin (F); a plug of fecal debris on top of the formalin layer (D); and a layer of ethyl acetate on the top (EA).	Page 78
Figure 38	Ultra-sensitive balance with digital display used for weighing amount of chemicals used in staining.	Page 80
Figure 39	Specimens are put in the centrifuge tubes to be prepared for the first incubation after centrifugation.	Page 84
Figure 40	ELISA wash machine doing 5 washes to the specimens.	Page 85
Figure 41	ELISA reading and printing machines that were used in the research.	Page 86
Figure 42	Entamoeba histolytica cyst by direct wet examination.	Page 88

Figure 43	Entamoeba histolytica cyst stained with iodine.	Page 88
Figure 44	Pie chart showing the relation between type of sample and results of direct examination for <i>Entamoeba</i> .	Page 89
Figure 45	Graph showing the relation between results of direct examination and concentration methods.	Page 91
Figure 46	Giardia lamblia cyst by direct wet examination.	Page 93
Figure 47	Giardia lamblia cysts by direct wet examination.	Page 94
Figure 48	Pie chart showing the relation between the type of sample and the results of direct examination for <i>Giardia</i> .	Page 94
Figure 49	Graph showing the relation between the results of direct examination and concentration method for <i>Giardia</i> .	Page 96
Figure 50	Graph showing the relation between type of sample and results obtained from ELISA for <i>Entamoeba</i> .	Page 98
Figure 51	Showing the ELISA for <i>Entamoeba</i> with yellowish coloration of wells that are supposed to be positive by ELISA.	Page 99
Figure 52	Pie chart showing the relation between results of direct examination and ELISA for <i>Entamoeba</i> .	Page 100
Figure 53	Graph showing the relation between results of concentration method and results of ELISA for <i>Entamoeba</i> .	Page 104
Figure 54	Pie chart showing different components of stool samples under examination in this study.	Page 109
Figure 55	Pie chart showing different component elements of stool samples positive by direct examination for <i>Entamoeba</i> .	Page 109
Figure 56	Pie chart showing different component elements of stool samples positive by direct examination for <i>Giardia</i> .	Page 110
Figure 57	Entamoeba histolytica /dispar cyst stained with trichrome stain.	Page 110
Figure 58	Entamoeba histolytica /dispar cyst stained with trichrome stain.	Page111
Figure 59	Giardia lamblia trophozoite stained with trichrome stain.	Page 111
Figure 60	Giardia lamblia trophozoite stained with trichrome stain.	Page 111
Figure 61	Giardia lamblia cyst stained with trichrome stain.	Page 112
Figure 62	Giardia lamblia cyst stained with trichrome stain.	Page 112

List of tables

Table 1	Showing the relation between results of types of fecal samples and direct wet examination of samples for <i>Entamoeba</i> .	Page 88
Table 2	Showing the relation between results of types of fecal samples and samples examination by concentration method for <i>Entamoeba</i> .	Page 90
Table 3	Showing the relation between results of direct wet examination of samples and results of examination of samples by concentration method for <i>Entamoeba</i> .	Page 91
Table 4	Showing the relation between results of direct wet examination of samples of both groups (adults and children) and results of examination of samples of both groups by concentration method for <i>Entamoeba</i> .	Page 92
Table 5	Showing the relation between results of types of fecal samples and direct wet examination of samples for <i>Giardia</i> .	Page 93
Table 6	Showing the relation between results of types of fecal samples and samples examination by concentration method for <i>Giardia</i> .	Page 95
Table 7	Showing the relation between results of direct wet examination of samples and results of examination of samples by concentration method for <i>Giardia</i> .	Page 96
Table 8	Showing the relation between results of direct wet examination of samples of both groups (adults and children) and results of examination of samples of both groups by concentration method for <i>Giardia</i> .	Page 97
Table 9	Showing the relation between results of types of fecal samples and examination of samples by ELISA for <i>Entamoeba</i> .	Page 98
Table 10	Showing the relation between ELISA results and results of direct wet examination of samples for <i>Entamoeba</i> .	Page 100
Table 11	Showing the relation between ELISA results in each group (adults and children) and results of direct wet examination of samples of both groups for <i>Entamoeba</i> .	Page 101
Table 12	Showing the relation between ELISA results and results of examination of samples by concentration method for <i>Entamoeba</i> .	Page 102
Table 13	Showing the relation between ELISA results in each group (adults and children) and results of examination of samples of both groups by concentration method for <i>Entamoeba</i> .	Page 103
Table 14	Showing the relation between results of types of fecal samples and presence of other parasites.	Page 105
Table 15	Showing the relation between component elements of stool samples and direct wet examination of samples for <i>Entamoeba</i> .	Page 107
Table 16	Showing the relation between component elements of stool samples and direct wet examination of samples for <i>Giardia</i> .	Page 108

List of abbreviations

- ALA = Amoebic liver abscess.
- ATP = Adenosine tri-phosphate.
- CF = Complement fixation.
- CIE = Counterimmunoelectrophoresis.
- CME = Conventional microscopic examination.
- CRP = Cysteine-rich surface protein.
- CT = Computerized tomography.
- DNA = Deoxy ribonucleic acid.
- dsRNA = double-stranded ribonucleic acid.
- E/M = Electron microscope.
- $E.\ coli = Entamoeba\ coli.$
- ECM = Extracellular matrix.
- E. dispar = Entamoeba dispar.
- EDTA = Ethylenediamine tetra acetic acid.
- E-ELISA = *Entamoeba* ELISA.
- E. hartmani = Entamoeba hartmani.
- \bullet E. histolytica = Entamoeba histolytica.
- EIA = Enzyme immunoassay.
- ELISA = Enzyme-linked immunosorbent assay.
- E. moshkovskii = Entamoeba moshkovskii.
- ER = Endoplasmic reticulum.
- GalNAc = Galactose N-acetyl D-galactosamine.
- Gal-GalNAc = Galactose and Galactose N-acetyl D-galactosamine.
- GIT = Gastrointestinal.
- GLV = Giardia lamblia virus.
- HIV = Human immuno-deficiency virus.

- HK = Hexokinase.
- HSP = Heat shock protein.
- IE = Immunoelectrophoresis.
- IFA = Indirect fluorescence assay.
- IgA = Immunoglobulin A.
- IgE = Immunoglobulin E.
- IgG = Immunoglobulin G.
- IgM = Immunoglobulin M.
- IHA = Indirect hemagglutination assay.
- IMS-IFA = Immunomagnetic Separation coupled with Immunofluorescence.
- Kb = Kilo base.
- kDa = Kilo Dalton.
- Mb = Mega base or Million base.
- MIF = Macrophage inhibition factor.
- MRI = Magnetic resonance imaging.
- nm = Nano meter.
- PAMPs = Pathogen-associated molecular patterns.
- PCR = Polymerase chain reaction.
- RBCs = Red blood cells.
- RNA = Ribonucleic acid.
- r-DNA = Ribosomal- deoxy ribonucleic acid.
- SPA = Surface proteolytic activity.
- Th1 = T helper 1.
- μ m = micro meter.

Table of contents

Chapter 1	1:
-----------	----

Introduction and aim of work	
Chapter 2: Review of literature	
History4	
Epidemiology	
Morphology and life cycle	
Pathology and pathogenesis	
Clinical picture	
Diagnosis	
Immunological reaction	
Treatment	
Materials and methods	
Statistics8	
Results	
Discussion	
Conclusions and recommendations	
Summary	
References	
Arabic summary	

Chapter 1 INTRODUCTION AND AIM OF WORK

Introduction

Humans are hosts to nearly over 70 species of protozoa, some derived from our primate ancestors and some are acquired from the domesticated animals or animals that came in contact with us during our relatively short history on Earth. Thereafter, the history of human parasitology proceeded along two lines, the discovery of a parasite and its subsequent association with disease and / or the recognition of a disease and the subsequent discovery that it was caused by a parasite (Cox, 2002).

Entamoeba histolytica and Giardia lamblia are micro-aerophilic protists, which have long been considered models of ancient premitochondriate eukaryotes that cause dysentery and diarrhea respectively. Each is a single cell protist with a motile trophozoite stage and an immotile cyst stage (Samuelson, 2002).

The parasitic protozoa were not possible to be recognized because of their small size until the invention of the microscope. The study of parasitic protozoa only really began two centuries later, following the discovery of bacteria and the promulgation of the germ theory by Pasteur and his colleagues at the end of the 19th century (Cox, 2002).

Regarding amoebae humans harbor nine species of intestinal amoebae, of which only one, *Entamoeba histolytica*, is a pathogen. Most infections are asymptomatic, but some strains of *Entamoeba histolytica* can invade the gut wall, causing severe ulceration and amoebic dysentery characterized by bloody stools. If the parasites gain access to damaged blood vessels, they may be carried to extraintestinal sites anywhere in the body (Bray, 1996).

The protozoan *Giardia lamblia* that causes giardiasis is the most commonly diagnosed flagellate in the intestinal tract. There is still debate over the appropriate classification and nomenclature of *Giardia* species.

The *intestinalis* group infects a variety of mammals (including humans), birds, and reptiles (Marshall et al., 1997)

Most infected individuals show few or no signs of infection, they act as unaffected carrier, but in some, particularly children, there may be malabsorption, diarrhea, and abdominal pain (Cox, 2002).

The diagnosis of giardiasis and intestinal amoebiasis is primarily based on microscopical detection of the organism in stool, but it has a low sensitivity and depends on the skill of experienced microscopist. The recently developed enzyme-linked immunosorbent assays (ELISAs) for detection of the specific antigens in stool hold the potential to become an efficient diagnostic technique (Schunk et al., 2001).

Aim of work

This study aims at detection of *Entamoeba histolytica* parasite and / or *Giardia lamblia* parasite in patients having diarrhea. Also, to evaluate and compare the diagnostic value of direct microscopy versus antigen detection using enzyme linked immunosorbent assay technique (ELISA) in case of *Entamoeba* infection.

Chapter 2

REVIEW OF LITRATURE