Detection of Methicillin Resistant Staphylococcus aureus with Reduced Susceptibility to Vancomycin

Thesis

Submitted for Partial Fullfilment of Master Degree of Clinical Pathology

By

Maha Soliman Abdel Hamid

(MB Bch)
Faculty of Medicine
Ain Shams University

Under Supervision of

Dr/ Hala Badr El-Din Ali Othman

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr/ Fatma Alzahraa Mohamed Gomaa

Assistant Professor of Microbiology and Immunology Faculty of Pharmacy – Al Azhar University

Dr/ Rania Mohamed Abdel Halim

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr/ Hala Badr &I-Din Ali Othman,** Professor of Clinical Pathology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr/ Fatma Alzahraa**Mohamed Gomaa, Assistant Professor of Microbiology and Immunology, Faculty of Pharmacy – Al Azhar University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr/ Rania Mohamed Abdel Halim**, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Last but not least, I would like to express my hearty thanks to all my family for their support till this work was completed.

Maha Soliman Abdel Hamid

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
• Stapylococcus Aureus with Reduced Susceptibili Vancomycin	•
 Laboratory Diagnosis of Staphylococcus Aureus Reduced Susceplitity to Vancomycin 	
Prevention of VISA	51
Treatment of VISA	56
Materials and Methods	62
Results	79
Discussion	93
Conclusion	101
Recommendations	102
Summary	103
References	106
Appendix	127
Arabic Summary	

List of Abbreviations

Abb.	Full term
DIII	
	Brain heart infusion
BHIAVA	Brain heart infusion agar with vancomycin
<i>BMD</i>	$Broth\ Microdilution$
<i>CDC</i>	Centers for disease control and prevention
<i>CLSI</i>	Clinical and laboratory standards institute
DHSS	Department of health and social serives
DT	Doubling time
E-test GRD	Epsilometer test glycopeptide resistant detection
<i>E-test</i>	Epsilometer
EUCAST	European committe for antimicrobial susceptibility testing
GISA	Glycopeptide intermediate staph. aureus
hGISA	Heterogenous glycopeptide intermediate staph. aureus
hVISA	Heterogenous vancomycin intermediate staphylococcus aureus
MALDI-TOF	The matrix—assisted laser desorption ionization — time of flight mass spectrometry
<i>MET</i>	$ Macromethod\ E ext{-}test$
<i>MHA</i>	Muller Minton Agar
MHA5T	Muller hinter agar with 5mg teicoplanin
<i>MIC</i>	Minimal inhibitory concentration
MRSA	Methicillin resistant staphylococcus aureus

List of Abbreviations (Cont...)

Abb.	Full term
NCCLS	National communitte for clinical laboratory standards
<i>PAP</i>	Population analysis profile
PAP-AUC	Population analysis profile-area under the curve
<i>PBP</i>	Penicillin binding protein
PG	Peptidogly can
<i>QD</i>	$ Quin prist in ext{-} dal foprist in$
SVISA	Slow vancomycin intermediate staph. aureus
TMP-SMX	Trime throp rism-sulphamethoxozole
TSB	Tyrptone soya broth
VISA	Vancomycin intermediate staph. aureus
VRSA	Vancomycin resistant staph. Aureus

List of Tables

Table No.	Title	Page	No.
Table (1):	Broth microdilation method detection of <i>Stapylococcoi aureus</i> v reduced susceplibility to vancomycin	with	6
Table (2):	CLSI and EUCAST breakpoints vancomycin	for	
Table (3):	Prevalence of hVISA and VISA bases study period, origin of study, and iso selection.	late	16
Table (4):	Overexpressed genes associated of glycopeptide resistance	with	
Table (5):	Functional categorization of genes are singly mutated in 32 vancomy intermediate staphyloccous aut (VSISA)-converted strains	that cin- reus	
Table (6):	Sensitivity and specificity of difference screening methods for detection of G and hGISA.	rent ISA	
Table (7):	Methodology for screening confirmation of hVISA and V strains.	and TSA	
Table (8):	Susceptibility break points of vite system (AST PG 76) cards staphylococcus aureus (CLSI 2015)	k 2 of	
Table (9):	Results of vancomycin screening a for detection of vancomycin redususceptibility in MRSA isolates	agar aced	
Table (10):	Comparison between vancom screening agar 2ug/ml with casein	ycin and	
Table (11):	BMD. Comparison between vancom screening agar 2ug/ml without ca	ycin	
	and BMD		84

List of Tables (Cont...)

Table No.	Title	Page No.	
Table (12):	Comparison between vancomy screening agar 4ug/ml with casein BMD.	and	35
Table (13):	Comparison between vancomy screening agar 4ug/ml without case and BMD.	ycin sein	36
Table (14):	Comparison between vancomy screening agar 6 ug/ml with casein BMD.	and	37
Table (15):	Comparison between vancomy screening agar 6ug/ml without case and BMD.	ycin sein	88
Table (16):	Diagnostic performance of vancomy screening agar with different concentrations 2,4,6 ug/ml	ycin rent	
Table (17):	vancomycin, with and without casein Result of susceptibility testing for MRSA isolates using AST GP 76 ca	100	9
	on Vitek 2 system: (CLSI, 2015)	9	1

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Colony morphology of hVISA and V strains.	
Figure (2):	Instability of "slow VISA" (sVISA) st. Mu3-GR-P	rain
Figure (3):	Transmission electron microscopy im shows the difference in thickness of cells	nage wall
Figure (4):	between VSSA and VISA Model showing the site of vancomycin acti in the division septum and the char	vity
E: (5).	associated with the VISA phenotype	19
Figure (5): Figure (6):	Laboratory diagnosis of VISA Subpopulations grown within the inhibitione, colonies inside ellipse represent h-VI	tion
Figure (7):	Show E-test Macrodilution showing vancomycin and one teicoplanin E test	one
Figure (8):	Examples of Etest methodology used to de VISA and h-VISA	etect
Figure (9):	Flow diagram describing the poss	sible and
Figure (10):	infections being treated with vancomycin Growth of VISA on vancomycin screen	45
_	agars	68
Figure (11): Figure (12):	Broth micodilution plate. Result of vancomycin susceptibility in MI isolates using Broth microdilution (BI	RSA MD)
Figure (13):	methodResults of vancomycin screening agar detection of vancomycin redu	for
Figure (14):	susceptibility in MRSA isolates Result of susceptibility testing for 100 MI	82 RSA
	isolates using AST GP 76 cards on Vite	ek 2 92

Introduction

Staphylococcus aureus (S.aureus) is a major cause of hospital acquired infections, causing high morbidity and mortality throughout the world. The proportion of methicillin resistant Staphylococcus aureus (MRSA) has risen worldwide during the last decades. The recommended treatment for multiresistant MRSA are glycopeptides, particularly vancomycin (Wootton et al., 2001).

Since the emergence of vancomycin resistance in enterococci in 1988 and its in vitro demonstration that its resistance genes (van A and van B) are transmissible to other bacterial species including *S.aureus*, emergence of vancomycin resistance in clinical *Staphylococci* has become a great concern (Tenover et al., 1998). Staphylococcus aureus isolates with reduced susceptibility to vancomycin, including those with intermediate susceptibility, are usually associated with worse treatment outcomes (Lodise., 2008).

Initial reports of reduced vancomycin susceptibility in clinical isolates of S. aureus from Japan in 1997 generated significant concern in the medical community. Since that time there has been uncertainty regarding optimal laboratory detection and the clinical relevance of reduced vancomycin susceptibility in S. aureus. So Clinical and Laboratory Standards Institute (CLSI) changes the minimal inhibitory concentration (MIC) breakpoints for vancomycin against S.

aureus, and there has been increased concern regarding the efficacy of vancomycin for the treatment of S. aureus infections (Howeden et al., 2010).

In January 2006, the Clinical and Laboratory Standards Institute (CLSI) updated MIC breakpoints for vancomycin susceptibility testing for *S. aureus* such that an MIC less than 2 ug/mL is considered to represent susceptibility to vancomycin, 4-8 ug/mL intermediate susceptibility and greater than 16 ug/L resistant to vancomycin Additionally, in 2009, the CLSI altered the guidelines for *Staphylococci* such that disk diffusion was no acceptable means for testing vancomycin susceptibility in these organisms (Burnham et al., 2010).

According to CLSI, broth microdilution (BM) is considered the gold standard to determine vancomycin MIC. However, because it is time-consuming, a considerable number of clinical laboratories do not use it as routine methodology. Other techniques have been widely used, with variable sensitivity and specificity, such as E-test and automated systems (Rossatto et al., 2014).

The definition and optimal laboratory detection of hetergenous vancomycin intermediate S. aureus (hVISA) remain uncertain. Essentially, hVISA isolate is a S. aureus isolate with a vancomycin MIC within the susceptible range when tested by routine methods, but where a proportion of the

population of cells are in the vancomycin-intermediate range (Raybak et al., 2015).

Standardized reference methods for susceptibility testing, such as CLSI broth microdilution, agar dilution, and standard E-test methods, fail to detect hVISA, in part due to the small inoculum, the relatively poor support of growth on Mueller-Hinton agar plates, or a combination of both. Inoculum size is critical to detection of the minor subpopulation of resistant cells. Additionally, hVISA strains are notoriously slow growing, with thickened cell walls and unique pleomorphic features, such as small-colony variants. Screening for hVISA by the population analysis profile-area under the curve (PAP-AUC) method has been the most reliable and reproducible approach but is labor-intensive, costly, and unsuitable for routine use in clinical laboratories (Howeden et al., 2010).

A variety of alternative methods for detection of the heteroresistant phenotype have been evaluated with varying success e.g. standard E-test, E-test GRD, E-test macromethod, BHI screen agar plates (Satola et al., 2011).

addition to knowing the In appropriate testing methodologies, all laboratories should develop a step by step problem-solving procedure or algorithm for detecting VRSA specifically for their laboratory (CDC, 2015).

AIM OF THE WORK

- To detect the efficacy of phenotypic and automated methods for detection of MRSA with reduced susceptibility to vancomycin
- To determine the best MIC concentration in vancomycin screening agar for detection of VISA among MRSA isolates.

Chapter 1

STAPYLOCOCCUS AUREUS WITH REDUCED SUSCEPTIBILITY TO VANCOMYCIN

Stapylococcus aureus with reduced susceptibilibty to vancomycin is the term that contain both glycopeptide intermediate Staphylococcus aureus (GISA) and heterogeneous glycopeptide intermediate Staphylococcus aureus (HGISA) (Devi et al., 2015).

Definition

Centres for Disease Control and prevention (CDC) definitions for classifying isolates of *S. aureus* with reduced susceptibility to vancomycin are based on the laboratory breakpoints published by the Clinical and Laboratory Standards Institute (formerly NCCLS), M100-S16; Jan 2006 (CDC, 2015).

- Vancomycin-susceptible S. aureus (VSSA): Vancomycin MIC:≤ 2 µg/ml.
- Vancomycin-intermediate S. aureus (VISA): Vancomycin MIC: = 4-8 μg/ml.
- Vancomycin-resistant S. aureus (VRSA): Vancomycin
 MIC: ≥ 16 μg/ml. (Table 1)

Table (1): Broth microdilution method for detection of Stapylococcoi aureus with reduced susceplibility to vancomycin

Vancomycin	Broth Microdilution method (Reference method recommended by CLSI, EUCA etc)			`
Vancomycin interpretation	Phenotypes	CLSI interpretation prior to 2006 (in µg/ml)	CLSI interpretation after 2006 (in µg/ml)	EUCAST interpretation till 2015 (in µg/ml)
Susceptible	VSSA	≤ 4	≤2	≤ 2
*Heteroresistant	*hVISA	-	-	-
Intermediate	VISA	8-16	4-8	Excluded from the definition
Resistant	VRSA	≥ 32	≥ 16	>2
*Heteroresistant subpopulations remain within susceptible range of vancomycin				

MIC (1-2 μ g/ml)

(Devi et al., 2015)

Table (2): CLSI and EUCAST breakpoints for vancomycin

Characteristics	hVISA	VISA	VRSA
MIC	1-2 μg/ml	4-8 μg/ml	\geq 16 µg/ml
Mechanism of	Cell wall	Cell wall thickening	Substitution of
resistance	thickening and	and	D-Ala-D-Ala
	hyperproduction of	hyperproduction of	with D- Ala-D-
	glycopeptide	glycopeptide	Lac
	binding targets	binding targets.	
	Endogenous	Endogenous	Van A
Gene encoding	resistance-	resistance-	
for resistance	Chromosomal	Chromosomal	
	mutation	mutation	
Recommended	-	Vancomycin MIC:	Vancomycin
methods for		E-test, Microbroth	MIC: E-test,
detection in CLSI		dilution method	Microbroth
guidelines			dilution method
Recommended	Screening methods (hVISA, VISA and VRSA): Macro E-test,		
methods for	Glycopeptide resistance detection test and Teicoplanin		
detection in	screening agar.		
EUCAST	Confirmatory testing for hVISA/VISA: Population analysis		
guidelines	profile-Gold standard		

(Devi et al., 2015)