

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Biochemical Studies For Evaluation and Molecular Characterization of a New Polymerase Chain Reaction-Enzyme-Linked Immunosorbent Assay (PCR-ELISA) for Detection of Wuchereria bancrofti DNA

Submitted to Cairo University, Faculty of Science In partial fulfillment of the Requirements

For the master degree

Of Science

(Biological Chemistry)

By

Marwa Adly Abdalla.

Bachelor of Chemistry

Department of Chemistry

Faculty of Science

Cairo University

2001

B 1-0EV

Approval Sheet For Submission

Title of M.Sc. Thesis

Biochemical Studies For Evaluation and Molecular Characterization of a

New Polymerase Chain Reaction-Enzyme-Linked Immunosorbent Assay

(PCR-ELISA) for Detection of Wuchereria bancrofti DNA

Name of Candidate

Marwa Adly Abdalla

Submitted to the

Faculty of Science, Cairo University

This Thesis has been approved for submission by the supervisors

1. Prof. Dr. Sadek El-Said Abdou Prof of Chemistry, Faculty of Science, Cairo University

2. Prof. Dr. Reda Rashad Ramzy

Prof of immunology, and head of immunology Department, Nutrition Institute

3. Dr. Amr Saad Mohamed
Lecturer of Biochemistry, Faculty of Science, Cairo University

Prof Dr. Mohammed Helmy Elnagdi Chairman of Chemistry Department Faculty of Science, Cairo University **ABSTRACT**

Name: Marwa Adiy Abdalia

Title of M.Sc.

Thesis: Biochemical Studies For Evaluation and Molecular

Characterization

of

New

Polymerase Chain Reaction-Enzyme-Linked

Immunosorbent Assay (PCR-ELISA) for Detection of Wuchereria bancrofti DNA

Degree: Master of Science, Thesis, Faculty of Science, Cairo University (2001)

This work has been carried out to evaluate the performance, sensitivity and

practical utility of the newly developed polymerase chain reaction-enzyme-linked

immunosorbent assay (PCR-ELISA) in detecting Wuchereria bancrofti DNA in the

mosquito vector in a low endemic village as a model for after treatment situation. The

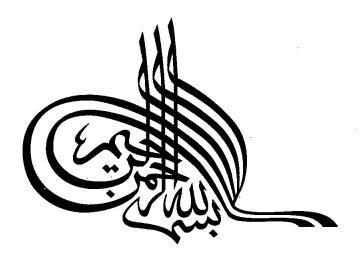
described assay that combines the conventional PCR with the use of an internal control

and a very sensitive ELISA detection of PCR products can be successfully employed to

screen large numbers of mosquitoes and calculate the infection rate of mosquitoes in low

endemic areas. It was successfully employed to estimate the relative amount of W.

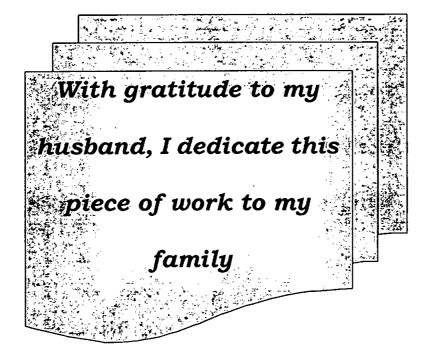
bancrofti DNA present in wild caught mosquitoes providing semi-quantitative data. The


method provides accurate description of the level of inhibition in mosquito pools and thus

help preventing false negative results.

Key words

Lymphatic filariasis, Wuchereria bancrofti, Culex pipiens, quantitative PCR, PCR-


ELISA, internal control, false negatives.

. 5

.

}

Acknowledgement

I would like to express my deepest thanks and appreciation to my mentor Dr. Reda M. Rashad Ramzy, Professor of Immunology and Head of Immunology Unit, Nutrition Institute, for his invaluable scientific advice, non-ending support and precious time he kindly dedicated to this work.

I wish to extend my sincerest gratitude to Dr. Amr Saad Mohamed, Lecturer of Biochemistry, Faculty of Science, Cairo University for his encouragement and invaluable advice throughout thesis writing.

Thanks are also due to Dr. Sadek El- Said Abdou, Prof of Chemistry, Faculty of Science, Cairo University for his kind encouragement.

Warmest gratitude is due to Dr. Ibrahim Hassan Kamal, Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University for his never-ending assistance and invaluable quidance.

Sincerest appreciation goes to Dr. Hanan Helmy, Researcher, Research and Training on Vectors of Diseases, Ain Shams University, for her non-ending moral support and invaluable advice. My heartfelt thanks go to my colleagues at the Blue Lab, Research and Training Center on Vectors of Diseases, Ain Shams University, for their never-ending support.

I would like to sincerely thank my colleagues at the Research and Training Center on Vectors of Diseases, Ain Shams University, for their constant support and kind hospitality.

I would like to sincerely thank my colleagues of the filariasis field group of Research and Training Center on Vectors of Diseases, Ain Shams University, for the constant supply of biological materials.

Contents

Page

Abstract	
Acknowledgment	
List of figures	
List of tables	
I. Introduction	1
II. Review of literature	7
A. The Parasite	7
B. Distribution	8
C. Clinical Manifestations	9
1. Asymptomatic amicrofilaraemia	9
2. Asymptomatic microfilaraemia	10
3. Acute manifestations	10
4. Chronic manifestations	11
D. Transmission of the Disease	11
E. Diagnosis	13
1. Parasitological methods	13
2. Lymphangiography and Lymphosintigraphy	. 13
3. Immunological assays	14
a. Antigen detection assay	14
h Filoriagia card tost	1.4

c. Antibody detection assay	15
4. Polymerase chain reaction (PCR).	16
F. Detection of W. bancrofti larvae in the mosquito vectors	17
1. Traditional dissection techniques	17
2. Nucleic acid probes	18
3. Polymerase chain reaction (PCR)	19
a. PCR Components	20
a.1. Single stranded DNA (Template)	20
a.2. Taq DNA polymerase and reaction buffer	21
a.3. Deoxyribonucleoside triphosphates (dNTPs)	22
a.4. Primers	23
b. PCR Technical Steps	24
1. Denaturation	24
2. Annealing	25
3. Extension	25
Cycles number	25
c. General aspects concerning PCR	26
c.1. Primer-dimer artifacts	26
c.2. False positive results	26
c.3. False negative results	27
d. Detection of PCR product	· 29
d.1. Direct visualization using gel electrophoresis	29
d.2. Detection using DNA probes.	29

4. Quantitative PCR	30
a. Limiting dilution	30
b. External standards	31
c. Endogenous standards.	32
d. Competitive PCR	33
a. The internal standard	34
b. Detection and analysis of PCR products	37
III. Materials and methods	39
A. Biological Materials	39
1. Laboratory studies	39
2. Field studies	39
a. Study area	39
b. Mosquito collection.	40
B. Laboratory Materials	40
1. Mosquito DNA extraction buffers	40
2. Electrophoresis buffers.	42
3. Wb-QC-PCR-ELISA buffers	43
C. Samples assessment.	45
1. Mosquito DNA extraction	45
a. Preparation of mosquitoes	45
b. Alkaline lysis of crushed mosquitoes	46
c. DNA binding and washing of the pellet	46
d. Elution of DNA	46
2. Polymerase chain reaction (PCR)	17