

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

GENETICAL STUDIES ON SOME AGRONOMICAL AND CHEMICAL CHARACTERS IN EGYPTIAN COTTON

By

Azima Mohamed Abd El-Salam

B.Sc. Agric., (Agronomy), Alex. University, 1970 M.Sc. Agric. (Genetics), Kafr El-Sheikh, Tanta Univ., 1979

Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Genetics

Department of Genetics
Faculty of Agriculture
Kafr El-Sheikh
Tanta University

1999

GENETIC STUDY OF SOME AGRONOMICAL AND CHEMICAL CHARACTERS IN EGYPTIAN COTTON

By Azima Mohamed Abd El-Salam

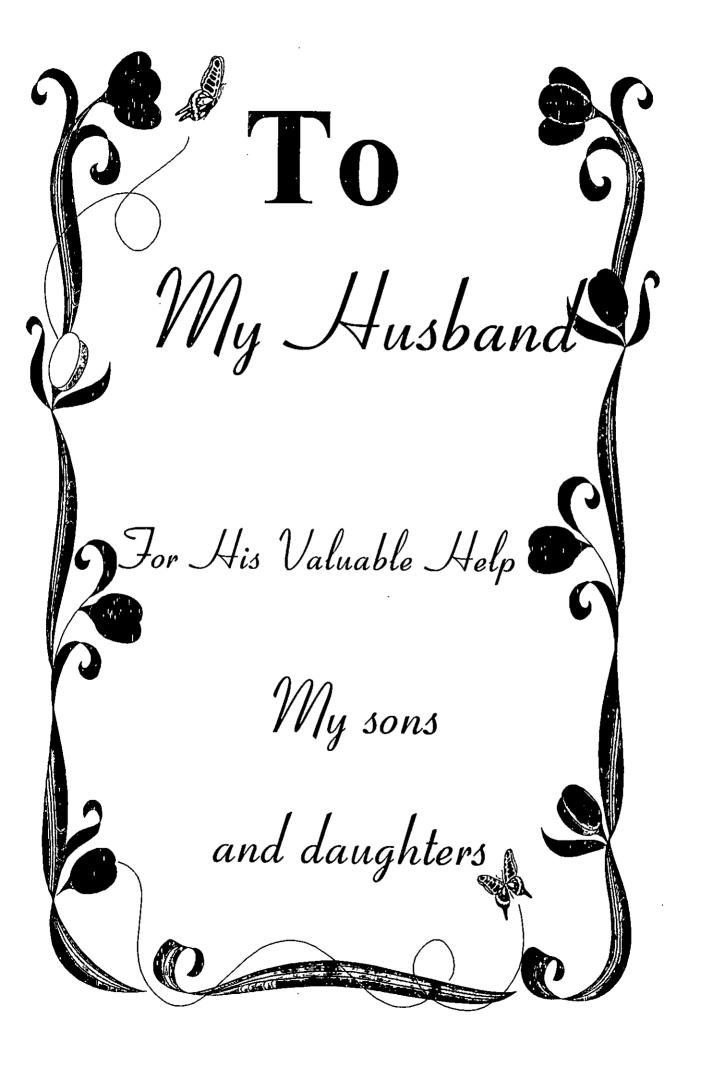
B.Sc. Agric., (Agronomy), Alex. University, 1970 M.Sc. Agric. (Genetics), Kafr El-Sheikh, Tanta Univ., 1979

For the Degree of

Doctor of Philosophy

 \int_{n}

Genetics


Approved:

H-E-galal FI Salama

Abdel Hamid A. Al.

Said Dara

25/ 7/1999

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisors, Prof. Dr. Salem A. Abd-Alla, Prof. of Genetics and Former head of Genetics Department, Faculty of Agric., Kafr El-Sheikh, Tanta Univ. Prof. Dr. Abd El-Hamid A. Ali Prof. of Genetics and Head of Genetics Department in the Same Faculty, Dr. Said A. Dora, Assoc. Prof. of Genetics, Department of Genetics, in the Same Faculty and Prof. Dr. Mohamed H. Abd El-All, Prof. of Plant Physiology, Cotton Research Institute, Agriculture Research Center for suggesting the problem, valuable guidance and supervision through the course of the investigation, constructive criticism during the preparation of the manuscript, useful help, valuable advice and encouragement along the progress of this work.

Deepest gratitude and sincere appreciation are due to Prof. Dr. Hassan E. Galal, Prof. Dr. Gomaah El-Fadly, Dr. Mostafa Nasser, Dr. Mohamed Abd El-Mageed and Dr. Ali Abu-Shosha for their encouragement and valuable advice.

I am greatly indebted to all staff of genetics Department, Faculty of Agric. Kafr El-Sheikh Tanta Univ.

Special thanks and deep gratitude are also to my husband **Prof. Dr. Abd El-Rahman A. Galal** Prof. of Agronomy, Maize Research Section,

Sakha Agriculture Experiment Station for supervision, effective help,

advice in analysis of data and conductive criticism during the preparation of the manuscript.

Thanks are due to Prof. Dr. Mohamed S. Ismail, Head of Cotton Physiology Research Section, Cotton Research Institute; Prof. Dr. Eimel A. Girgis; Prof. Dr. Mohamed El-Kashlan, Dr. Nabil Abu-Raya, Dr. Mohamed El-Menshawi and all staff members of cotton physiology section for their help and encouragement in the experimental work.

Finally I would like to expresses my sincere gratitude to my family for their patience and understanding.

CONTENTS

INT	RODUCTION	1
REV	VIEW OF LITERATURE	2
I.	Influence of growth regulators on cotton characteristics	2
II.	Estimation of genetic variability	
III.	Heterosis and combining ability	
MA	TERIALS AND METHODS	29
I.	Effect of growth regulators on genetic variability of	
	different cotton characteristics	29
II.	Effect of growth regulators on type of gene action	
RES	SULTS AND DISCUSSION	39
1.	Genetic variability	39
	I.a. Chlorophyll and carotenoides	39
	1.b. Influence of growth regulators on flowering	
	I.c. Plant height	
	I.d. Yield and yield components	56
II.	Heterosis and combining ability	
	II.a. Chlorophyll and carotenoides	
	II.b. Reducing sugar, total phenols and auxin	
	II.c. Plant height	
	II.d. Yield and yield components	
Ш.	Fiber traits	
SUN	MMARY	. 104
LIT	TERATURE CITED	. 112

ARABIC SUMMARY

INTRODUCTION

Since twenty years ago cotton was ranked as the first fiber crop in the world. In Egypt, about 20% of the total growing area is cultivated with cotton (*G. barbadense*). Now the cultivated area is about 700,000 feddan. Egyptian cotton varieties proved to be limited in their yield productivity, although they represent the most important part of the world finest cotton.

The ultimate goal of all cotton breeding programs is to increase yield as well as improving fiber properties. On the other hand, yield and yield component traits are influenced by both genetic and environmental variations in addition to the interaction of these two factors and careful consideration of this point should be an important purpose for any successful improvement program.

Many investigators demonstrated that plant hormones and growth regulators play an important role in the different physiological processes of higher plants (Jacobs, 1979). Flowering, fruit setting, flower and fruit abscission, fruit growth, maturation and dormancy are physiological processes which are controlled by the gradual changes in the naturally-occurring growth active materials during different growth stages. Furthermore, these stages are greatly influenced by environmental conditions and can be modified by application of a wide variety of exogenous growth regulators such as auxins, gibberellins, kinetins and phenols.

This investigation was achieved to assess the following objectives:

- 1- The influence of growth regulators on cotton characteristics.
- 2- Estimation of genetic variability, heritability and expected genetic gain from selection inter-cotton varietal crosses.
- 3- Estimation of both general and specific combining ability in a diallel cross set of cotton varieties under different growth regulators effects and their implication in future breeding program.

REVIEW OF LITERATURE

The review of literature was divided into three main parts as follow:

- I- Influence of growth regulators on cotton characteristics.
- II- Estimation of genetic variability.
- III- Combining ability and heterosis.

I. Influence of Growth Regulators on Cotton Characteristics

Five types of chemical growth regulator systems are well known for the plant physiologists (Garl Leopold and Kriedemann, 1978). These five systems were classified as follows:

The auxin and gibberellins which stimulate cell elongation; the cytokinins, which stimulate cell division; ethylene gas, which stimulates the swelling or isodiameteric growth of stems and roots and the inhibitors. Each of these types is capable of altering most aspects of growth including cell division, cell enlargement, differentiation and differential growth phenomena.

Gibberellins are a group of closely related naturally occurring compounds in the higher plants. They were first isolated in 1939 in Japan by Yobuta and Suniki, and Known principally for their effects on modifying many physiological processes in plant.