

Cairo University
Faculty of Veterinary Medicine
Dept. of Biochemistry and Chemistry of Nutrition

Genetic merits of fertility in Egyptian goats

By Samira Hamed Sayed Ahmed B.v.sc., Cairo University 2007

M. V.Sc.in Biochemistry and Chemistry of Nutrition 2011

For the degree of Ph.D.
In
Veterinary Science
(Biochemistry and Chemistry of Nutrition)
Under The Supervision of

Prof. Dr. Said Zaki Mostafa

Professor of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine Cairo University

Prof. Dr. Eman Moawad Gouda

Professor of Biochemistry and Chemistry of Nutrition Faculty of Veterinary Medicine Cairo University

(2016)

Cairo University
Faculty of Veterinary Medicine
Dept. of Biochemistry and Chemistry of Nutrition

Supervision Sheet Supervisors

Prof. Dr. Said Zaki Mostafa

Professor of Biochemistry and Chemistry of
Nutrition
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Eman Moawad Gouda

Professor of Biochemistry and Chemistry of
Nutrition
Faculty of Veterinary Medicine
Cairo University

Cairo University

Faculty of Veterinary Medicine

Dept. of Biochemistry and Chemistry of Nutrition

Name: Samira Hamed Sayed Ahmed

Nationality: Egyptian

Date of birth: 1/12/1984

Place of birth: El Gharbia

Specification: Biochemistry and Chemistry of Nutrition

Thesis title: "Genetic merits of fertility in Egyptian goats"

Supervisors: Prof. Dr. Said Zaki Mostafa

Prof. Dr. Eman Moawad Gouda

Abstract:

Aiming to estimate the genotypic and allelic frequencies of FSHβ and FSHR genes in four Egyptian goat breeds in relation to fertility traits, DNA was isolated from whole blood of 160 animals of Baladi, Parqi, Damascus and Zaraibi goat breeds. PCR-SSCP and sequencing for FSHβ Exon1 revealed five genotypes and several SNPs with significant positive effect of AA genotype on litter size. Two genotypes and one SNP in restriction site of the enzyme at Intron2, Exon3 locus of FSHβ gene using PCR- RFLP technique were obtained. Polymorphism using PCR- SSCP of FSHR 5' regulatory region revealed three genotypes and two SNPs, with AA and BB genotypes had greater litter size in Baladi and Parqi does respectively. While, exon10 of FSHR gene had only one genotype indicating homozygosity of this locus among studied breeds. These results revealed that FSHβ and FSHR genes could be potential candidate genetic markers for improving goat breeding.

<u>Key words:</u> FSHβ, FSHR, genotyping, fertility traits, Egyptian goats.

TO THE SOURCE OF LOVE AND HAPPINESS
IN MY LIFE

To My husband "Mohamed Abdelaleem"

The most wonderful thing I decided to do was to share my life and heart with you. I am truly thankful for having you in my life.

To angels of my life, who make me bear the hardness and forget the efforts when look at their faces; my kids (Judy and Moaz).

And To The partners who share me the load and gave me the strength to bear any difficulties, My Ever Loving and Caring "My family"

Acknowledgment

First and foremost, I would like to thank ALLAH. Praise is always and forever to god.

"Whoever does not thank people does not thank ALLAH"

So I would like to express my gratitude and deepest thank to **Prof. Dr. Said Zaki Mostafa**, Professor and head of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University for his support, valuable supervision and encouragement.

I would like to express my deepest and endless thanks and gratitude to my supervisor **Prof. Dr. Eman Moawad Gouda**, Professor of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University for her scientific supervision, kind encouragement, valuable guidance who played an important role in completion of this work.

I would like to express my deepest thanks and gratitude to **Dr. Marwa** Ibrahim, assistant professor of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University for her help in the sequence editing and the use of Blast and multialign programs.

My sincere thanks to **Dr. Mona Galal** and **Dr. Huda Omar** for continous encouragement and subtle direction of my effort throughout the preparation of the thesis.

Gratitude is also to **Dr. El- Sayed M. Abdel- Kafy,** Senior Researcher in animal production research institute and **Dr. Tarek abdel-aleem** for their help in Sample collection.

And lastly, I would like to express my deep thanks to all members and my friends (Shimaa, Maha, Aya and Ghada) of the Biochemistry and Chemistry of Nutrition dept, Faculty of Veterinary Medicine, Cairo University for their encouragement, love and prayers.

CONTENTS

	Page
1- Introduction	1
2-Review of literature	4
2. 1. Domestic Goat (Capra hircus)	4
2. 1. 1. Goats in Egypt	5
2. 1. 2. Breeds of Egyptian goats	6
2. 2. Goats and reproduction	10
2. 2. 1. Factors affecting goat reproduction	11
2. 3. Marker assisted selection (MAS)	15
2. 3. 1. Genetic polymorphism	16
2. 3. 2. Hardy-Weinberg Equilibrium (HWE)	19
2. 4. Gonadotropins and Fertility in goats	20
2. 4. 1. Structural features of the gonadotropins	21
2. 4. 2. The Follicle stimulating hormone (FSH)	22
2. 4. 2. 1. Biological functions of FSH	22
2. 4. 2. 2. Chemical structure of FSH	23
2. 5. The Follicle stimulating hormone beta subunit gene	26
2.5.1. FSHβ genomic region.	26
2. 5. 2. FSH beta subunit gene structure	28
2. 5. 3. FSHβ gene expression	29
2. 5. 3. 1. GnRH Regulation of FSHβ	29
2. 5. 3. 2. Activin Regulation of FSHβ	30
2. 5. 3. 3. Steroid Regulation of FSHβ	31
2. 5. 4. Mutations of the FSH β-subunit gene	32
2. 6. The Follicle Stimulating Hormone Receptor (FSHR)	35
2. 6. 1. FSHR genomic location and structure	35
2. 6. 2. FSH receptor gene expression.	37

2. 6. 3. FSHR protein	39
2. 6. 4. SNPs in the FSHR gene	40
3. MATERIAL and METHODS	45
3.1. Material	45
3. 1. 1. Experimental animals	45
3.2.1. Blood Sampling	45
3.2. Methods	46
3.2.1. Extraction of Genomic DNA	49
3.2.2. Determination of DNA Quality and Quantity	50
3.2.3. Genotyping of FSHβ subunit Gene	50
3.2.3.1. Amplification of FSH β gene by Polymerase Chain Reaction (PCR)	54
3.2.3.2. Agarose gel electrophoresis	56
3.2.3.3. Single Strand Conformational Polymorphism (SSCP) of FSH _B Gene Exon1	62
3.2.3.4. Restriction Fragment Length Polymorphism (RFLP) Analysis of FSHβ intron2 and exon 3	66
3.2.4. Genotyping of FSHR Gene	66
3.2.4.1. Amplification of 2 loci of FSHR by PCR	69
3.2.4.2. Agarose Gel Electrophoresis.	69
3.2.4.3. Single Strand Conformational Polymorphism of FSHR Exon 10 and 5- regulatory region	69
3.2.5. Sequencing and sequence analysis	72
3.2.6. Statistical Analysis of Data	76
4. RESULTS	76
5. DISCUSSION	117
6- SUMMARY	136
7-REFERENCES	139
ARABIC SUMMARY	

LIST OF TABLES

		Page
Table (4.1)	: Schematic representation of the recorded	_
	SSCP pattern for FSHβ Exon-1 locus in the different breeds of goat.	78
Table (4.2)	: Allelic and Genotypic Frequencies of FSHβ Exon-1 and HWE in Baladi goats	79
Table (4.3)	: Association between FSHβ Exon 1 genotypes and fertility traits in Baladi goats	79
Table (4.4)	: Allelic and Genotypic Frequencies of FSHβ Exon-1 and HWE in Parqi goats	80
Table (4.5)	: Association between FSHβ Exon 1 genotypes and fertility traits in Parqi goats	81
Table (4.6)	: Genotypes Frequencies of FSHβ Exon-1 and HWE in Zaraibi goats	82
Table (4.7)	: Association between FSHβ Exon 1 genotypes and fertility traits in Zaraibi goats	82
Table (4.8)	: Allelic and Genotypic Frequencies of FSHβ Exon-1 and HWE in Damascus goats	83
Table (4.9)	: Association between FSHβ Exon 1 genotypes and fertility traits in Demescus goats	84
Table(4.10)	: Allelic & Genotypic Frequencies of FSH gene exon 1 in different goat breeds.	85
Table (4.11)	: Association between FSH\$B Exon 1 genotypes and Litter Size in different goat breeds	90
Table (4.12)	: Association between FSH\$B Exon 1 genotypes and Birth Number indifferent goat breeds	91
Table (4.13)	: Schematic representation of the recorded RFLP pattern for FSHβ intron2, Exon3 locus in the studied breeds.	92
	m me studied bleeds.	

Table (4.14)	: Allelic and Genotypic Frequencies of FSHβ	93
Table (4.15)	Intron-2 Exon-3 and HWE in Baladi goats	0.4
Table (4.15)	: Association between FSHβ Intron-2 Exon-3	94
T 11 (446)	genotypes and fertility traits in Baladi goats	o =
Table (4.16)	: Allelic and Genotypic Frequencies of FSHβ	95
T 11 (4.15)	Intron-2 Exon-3 and HWE in Parqi goats	0.5
Table (4.17)	: Association between FSHβ Intron-2 Exon-3	95
Table (4.19)	genotypes and fertility traits in Parqi goats • Allolia and Ganetypia Fraguencies of FSHB	96
Table (4.18)	: Allelic and Genotypic Frequencies of FSHβ Intron-2 Exon-3 and HWE in Zaraibi goats	90
Table (4.19)	: Allelic and Genotypic Frequencies of	
Table (4.19)		07
	FSHβIntron-2 Exon-3 and HWE in Damascus	97
	goats	
Table (4.20)	: Association between FSHβ Intron-2 Exon-3	00
	genotypes and fertility traits in Damascus	98
Table (4.21)	goats Allalia and Constrmia Fraguencies of FSHR	
Table (4.21)	: Allelic and Genotypic Frequencies of FSHβ gene Intron 2, exon 3 in different goat breeds	98
Table (4.22)	: Association between FSHβ Intron-2 Exon-3	
1 abic (4.22)	genotypes and litter size in different goat	101
	breeds	101
Table (4.23)	: Association between FSHβ Intron-2 Exon-3	
	genotypes and Birth number in different goat	102
	breeds	
Table (4.24)	: Schematic representation of the recorded	
	SSCP pattern for FSHR 5' regulatory locus in	103
	the studied breeds	
Table (4.25)	: Allelic and Genotypic Frequencies of	
	FSHR5' regulatory region and HWE in Baladi	104
T 11 (4.50)	goats	
Table (4.26)	: Association between FSHR 5' regulatory	104
	region genotypes and fertility traits in Baladi	104
Table (4.27)	goats : Allelic and Genotypic Frequencies of	
1 avic (4.27)	FSHR5' regulatory region and HWE in Parqi	105
	goats	103
	5000	

Table (4.28)	: Association between FSHR 5' regulatory	
	region genotypes and fertility traits in Parqi	106
	goats	
Table (4.29)	: Allelic and Genotypic Frequencies of	
	FSHR5' regulatory region and HWE in	107
	Zaraibi goats	
Table (4.30)	: Allelic and Genotypic Frequencies of	
	FSHR5' regulatory region and HWE in	108
	Damascus goats	
Table (4.31)	: Association between FSHR 5' regulatory	
, ,	region genotypes and fertility traits in	108
	Damascus goats	
Table (4.32)	: Allelic and Genotypic Frequencies of 5'	
	regulatory region of FSHR gene in different	109
	goat breeds	
Table (4.33)	: Association between FSHR 5' regulatory	
	region genotypes and litter size in different	112
	goat breeds	
Table (4.34)	: Association between FSHR 5' regulatory	
	region genotypes and Birth number in	112
	different goat breeds	

LIST OF FIGURES

		Page
Figure (2.1)	: Baladi goats, www. Bernadette simpson. Com/ goats.htm/.	7
Figure (2. 2)	: Damascus goat, sheep farm, in/ 176 Damascus goat profile information	8
Figure (2. 3)	: Parqi goat, www.blairdrummond. Com/ animals/ pygmy- goat.	9
Figure (2. 4)	: http://i597. Photobucket.com/	10
Figure (2. 5)	:Schematic representation of structures of the common a subunit and FSHβ genes and of FSH protein	24
Figure (2. 6)	: The three-dimensional structure of FSH.	26
Figure (2. 7)	: FSHβ in genomic location	26
Figure (2. 8)	:Schematic representation of the genomic context of the FSH β and the LH β /CG β genes	28
Figure (2. 9)	:FSHR in genomic location	36
Figure (2.10)	The currently known mutations and amino- acid-altering polymorphisms in FSH receptor gene	42
Figure (4.1)	:Allelic Frequencies of FSHβ gene exon 1 in different goat breeds	86
Figure (4.2)	:Genotypic Frequencies of FSHβ gene exon 1 in different goat breeds	86
Figure (4.3)	:BLAST result of sequence obtained from different FSHβ exon 1 genotypes in goat breeds	87
Figure (4.4)	:Alignment &Chromatogram results of all sequences of different FSHβ exon 1 genotypes in goat breeds.	87
Figure (4.5)	:Allelic Frequencies of FSHβ gene Intron 2, exon 3 in different goat breeds	99

Figure (4.6)	:Genotypic Frequencies of FSHβ gene Intron 2, exon 3 in different goat breeds	99
Figure (4.7)	:BLAST result of sequence obtained from different FSHβ Intron 2, exon 3 genotypes in goat breeds.	100
Figure (4.8)	:Alignment of sequences of different FSHβ Intron 2, exon 3 genotypes in goat breeds.	100
Figure (4.9)	:chromatogram results of FSHβ Intron 2, exon 3 genotypes in goat breeds	101
Figure (4.10)	:Allelic Frequencies of FSHR gene 5' regulatory region in different goat breeds	109
Figure (4.11)	:Genotypic Frequencies of FSHR gene 5' regulatory region in different goat breeds.	110
Figure (4.12)	:BLAST result of sequence obtained from different FSHR 5' regulatory region genotypes in goat breeds.	110
Figure (4.13)	:Alignment of sequences of different FSHR 5'regulatory region genotypes in goat breeds.	111
Figure (4.14)	:chromatogram results of FSHR 5' regulatory region genotypes in goat breeds	111
Figure (4.15)	:BLAST result of sequence obtained from different FSHR exon 10 genotypes in goat breeds	115
Figure (4.16)	:Alignment of sequences of different FSHR exon 10 genotypes in goat breeds	116
Figure (4. 17)	chromatogram results of FSHR Exon 10 genotypes in goat breeds	116

LIST OF PHOTOS

		page
Photo (4.1)	: Shows the Agarose gel electrophoresis (1%) for isolated genomic DNA from different goat breeds	76
Photo (4.2)	: Shows the Agarose gel electrophoresis for PCR products of Exon-1 of FSHβ subunit gene of the different breeds of goat.	77
Photo (4.3)	: PCR-SSCP for FSH β gene Exon-1 in Baladi goat breeds	78
Photo (4.4)	: PCR-SSCP for FSH β gene Exon-1 in Parqi goat breeds	80
Photo (4.5)	: PCR-SSCP for FSH β gene Exon-1 in Zaraibi goat breeds	81
Photo (4.6)	: PCR-SSCP for FSHβ gene Exon-1 in Damascus goat breeds	83
Photo (4.7)	: Shows the Agarose gel electrophoresis (2%) for PCR products of Intron2, Exon3 of FSHβ subunit gene of the different breeds of goat	92
Photo (4.8)	: PCR-RFLP Genotyping of Intron-2 Exon-3 of FSHβ gene in Baladi goat breed	93
Photo (4.9)	: PCR-RFLP Genotyping of Intron-2 Exon-3 of FSHβ gene in Parqi goat breed	94
Photo (4.10)	: PCR-RFLP Genotyping of Intron-2 Exon-3 of FSHβ gene in Zaraibi goat breed	96
Photo (4.11)	: PCR-RFLP Genotyping of Intron-2 Exon-3 of FSHβ gene in Demescus goat breed	97
Photo (4.12)	: Show the Agarose gel electrophoresis (2%) for PCR products of 5' regulatory region of FSHR	102

	gene of the different breeds of goat	
Photo (4.13)	: PCR-SSCP for FSHR gene 5' regulatory region in Baladi goat breeds	103
Photo (4.14)	: PCR-SSCP for FSHR gene 5' regulatory region in Parqi goat breeds	105
Photo (4.15)	: PCR-SSCP for FSHR gene 5' regulatory region in Zaraibi goat breeds	106
Photo (4.16)	: PCR-SSCP for FSHR gene 5' regulatory region in Damascus goat breeds	107
Photo (4.17)	: Shows the Agarose gel electrophoresis (2%) for PCR products of Exon-10 of FSHR gene of the different breeds of goat.	113
Photo (4.18)	: PCR-SSCP for FSHR gene Exon-10 in Baladi goat breeds	113
Photo (4.19)	: PCR-SSCP for FSHR gene Exon-10 in parqi goat breeds	114
Photo (4.20)	: PCR-SSCP for FSHR gene Exon-10 in Zaraibi goat breeds.	114
Photo (4.21)	: PCR-SSCP for FSHR gene Exon-10 in Damascus goat breeds	115

INTRODUCTION

Domesticated goats (Capra hircus) are generally referred to as poor-man's cow because of the significant role they play in the economic life of resource poor farmers in the traditional farming system, apart from being a source of high quality meat, milk, fiber and skin, goats are used as reserves for quick source of money in times of pressing need (Morand-Fehr, 1993).

In mammals the ovulation rate and the litter size is a result of well regulated interactions of endocrine and paracrine mediators. How precisely the litter size is controlled remains a critical and important question in reproductive biology. The tendency of twining and triplicate is common in both sheep and goat (**Polley et al., 2009**).

The follicle stimulating hormone (FSH) is a pituitary gonadotropin that plays a key role in the regulation of gonadal function and follicle development in mammals (Bartlewski et al., 2009; Aerts and Bols, 2010).

In new-born female mammals, FSH levels in the blood are very low, and slowly increase with age. A large number of FSH are secreted and released by pituitary after puberty, so that the blood concentrations of FSH significantly increased. In the same species, the livestock of some high litter size have higher FSH concentration than that of others in the blood (**Prunier and Chopineau 1990; Fleming et al. 1996; Wikins 1997**).

Al-Obaidi et al. (1987) confirmed that the increase of ovulation rate caused by inhibin had relationship with the elevated FSH