Evaluation of Quality of Vision with Diffractive Aspheric Multifocal Intraocular Lenses Implantation after Phacoemulsification

Thesis

Submitted for partial fulfilment of the M.D. degree in Ophthalmology

<u>By</u>

MALAK ADLY MOHAMED SALEH

M.B.,B.Ch., M.Sc.

SUPERVISED BY

Prof. Dr. FADIA M. SAMI EL-GUINDY

Professor of Ophthalmology
Former Head of Ophthalmology Department
Faculty of Medicine
Cairo University

Prof. Dr. HAZEM MOHAMED YASSIN

Professor of Ophthalmology Faculty of Medicine Cairo University

Dr. AHMED EL-SAWY HABIB

Lecturer of Ophthalmology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2012

ABSTRACT

Multifocal IOL implantation whether refractive or hybrid diffractive-refractive adds another option for cataract surgeons. The optical zones of a zonal refractive lens direct light to either the distance or near focus and each zone act as an independent lens. Diffractive lenses divide incoming light into multiple wavefronts using small steps on the optic surface which can be designed to produce 2 sharp focal points by wavefront interference but unlike the refractive lenses they create two lens powers and thus two images. Hybrid lenses combine both the refractive and diffractive technology.

ReSTOR and ReZoom multifocal IOLs provide excellent visual performance. Although contrast sensitivity is reduced compared to monofocal IOLs, patients with multifocal IOLs have the privilege of spectacle independence after cataract surgery.

Key Words:

Correction of Presbyopia, Multifocal IOLs, Quality of Vision.

TABLE OF CONTENTS

	Pa	ge
Acknowledgement		
Introduction & Aim of the work	••••	1
Review of Literature		3
Patients & Methods		40
Results	••••	55
Discussion	· • • • •	78
Conclusion		87
Summary	• • • •	88
References		89
Arabic Summary		

LIST OF ABBREVIATIONS

Add	Addition	MTF	Modulation transfer
			function
BCDVA	Best corrected distance visual	OTF	Optical transfer function
	acuity		
BDCNVA	Best distance-corrected near	PCO	Posterior capsular
	visual acuity		opacification
Cpd	Cycles per degree	PresbyLASIK	Presbyopic Laser insitu
			keratomileusis
CS	Contrast sensitivity	PSF	Point Spread Function
IOL	Intraocular lens	UCDVA	Uncorrected distance
			visual acuity
LECs	Lens epithelial cells	UCNVA	Uncorrected near visual
			acuity
MFIOL	Multifocal intraocular lens	UV	Ultraviolet

LIST OF TABLES

Table	Title	Page
Table 1	Formulas used in IOL power calculation	26
Table 2	Normal values for log contrast sensitivity	50
Table 3	Sex distribution	55
Table 4	Uncorrected distance visual acuity after 1 week	58
Table 5	Uncorrected near visual acuity after 1 week	58
Table 6	Uncorrected distance visual acuity after 1 month	59
Table 7	Uncorrected near visual acuity after 1 month	59
Table 8	Uncorrected distance visual acuity after 3 months	60
Table 9	Uncorrected near visual acuity after 3 months	60
Table 10	Best corrected distance visual acuity after 3 months	61
Table 11	Best distance corrected near visual acuity after 3 months	61
Table 12	Log CS after 1 week	63
Table 13	Log CS after 1 month	63
Table 14	Log CS after 3 months	63

LIST OF FIGURES

Figure	Title	Page
Figure 1	Crystalens accommodating IOL	6
Figure 2	Synchrony Dual-Optic Accomodating IOL.	7
Figure 3	Demonstrating diffraction when light passes through slits causing constructive and destructive interference.	11
Figure 4	Grimaldi's observation of diffraction	12
Figure 5	Circular aperture and Airy disc	13
Figure 6	Constructive and destructive interference	14
Figure 7	Fresnel zone plate	15
Figure 8	Fresnel lens principle.	16
Figure 9	Minimzing visual disturbances in ReSTOR MFIOL.	19
Figure 10	ReSTOR IOL	20
Figure 11	ReSTOR in dilated and constricted pupil.	20
Figure 12	Tecnis multifocal IOL	21

Figure 13	Acri.LISA 366D multifocal IOL	22
Figure 14	Array multifocal IOL	23
Figure 15	ReZoom multifocal IOL	24
Figure 16	Rayner M-flex multifocal IOL	25
Figure 17	AT Lisa toric IOL	28
Figure 18	The Zernike polynomials	32
Figure 19	Image of a point source in a high-quality eye versus an aberrated eye.	33
Figure 20	Wall chart test	36
Figure 21	Mars Letter Contrast Sensitivity Test	38
Figure 22	View-in testing device	39
Figure 23	Loading the ReSTOR IOL into the cartridge	45
Figure 24	MonarchII injector system (Alcon)	45
Figure 25	Loading the ReZoom IOL into the cartilage	46
Figure 26	Unfolder Emerald delivery system (AMO)	46
Figure 27	Three forms of Mars Letter Contrast Sensitivity Test	51

Figure 28	Mars Letter Contrast Sensitivity Score Sheet.	52
Figure 29	OPD-Scan Station ARK-10000 Nidek	53
Figure 30	Sex distribution	56
Figure 31	Mean Log CS in group A versus group B at 1 week, 1 month, and 3 months	62
Figure 32	No. of eyes with normal and moderate Log CS at 1 st week, 1 st month, and 3 rd month postoperatively	64
Figure 33	Strehl ratio of eyes in both groups after 1 month	65
Figure 34	Strehl ratio of eyes in both groups after 3 months	65
Figure 35	Mean MTF for group A versus group B at 1month and 3 months	66
Figure 36	Eye no. (1) in group A, 1month postoperatively	70
Figure 37	Eye no. (1) in group A, 3 months posoperatively.	71
Figure 38	Eye no. (2) in group A, 1 month postoperatively	72
Figure 39	Eye no. (2) in group A, 3 months postoperatively.	73
Figure 40	Eye no. (1) in group B, 1 month postoperatively.	74
Figure 41	Eye no (1) in group B, 3 months postoperatively	75

Figure 42	Eye no. (8) in group B, 1 month postoperatively	76
Figure 43	Eye no. (8) in group B, 3 months postoperatively	77

ACKNOWLEDGMENT

I would like to express my deepest gratitude and appreciation to Dr. Fadia M. Sami El-Guindy, Professor of ophthalmology and former head of ophthalmology department, Cairo university for dedicating so much of her precious time and effort and for her guidance, valuable suggestions and comments throughout the whole work.

I wish to express my sincere appreciation to Dr. **Hazem Mohamed Yassin**, Professor of ophthalmology, Cairo university for his kind assistance, help and constructive criticism that helped me to complete this work.

I am so much indebted to Dr. **Ahmed El-Sawy Habib**, Lecturer of ophthalmology, Cairo university for his close supervision, care and valuable advice that helped me in the initiation and progress of this work.

Introduction

Traditionally monofocal intraocular lenses (IOLs) with a single fixed focal length can provide excellent distance vision after cataract surgery. However, near to intermediate visual performance is often inadequate and can leave patients dependent on spectacles for near-vision tasks as computer work or reading. An alternative treatment is implantation of new-generation multifocal IOLs, which give a more acceptable range of near through distance vision as well as increased spectacle independence. (*Alfonso et al.*, 2007)

designs of multifocal intraocular lenses Early (MFIOL) simultaneously create images on the retina that are conjugate with 2 or more depth planes. These simultaneous vision IOLs provide distance, intermediate, and near correction within the area of the pupil. When the eye views a distant object, a sharp retinal image is provided by the parts of the lens within the pupillary area that have the distance correction and a somewhat blurred image by the other parts of the lens as these images are superimposed on the retina. (Montés-Micó and Alió, 2003) The unwanted effect of the light in the out-of-focus image is a reduction in contrast of the in-focus-image. This reduced image contrast and the unwanted visual phenomena including glare and haloes, often reduce the quality of vision for patients with multifocal IOL implantation. This drawback can be minimized by creating different amounts of refracteddiffracted light on the different foci. Another approach takes into consideration the pupil and the optical design of the IOL, which create different amounts of light on the different foci depending on pupil diameter. (Montés-Micó et al., 2004)

Aim of the work:

- 1. To evaluate the performance and visual outcome of the Acrysof ReSTOR SN6AD3 apodized diffractive aspheric multifocal IOL (Alcon laboratories, Inc.) compared to that of the ReZoom hydrophobic acrylic refractive multifocal IOL (Abbott Medical Optics, Inc., Santa Ana, CA, USA) for cataractous patients.
- 2. Assessment of the quality of vision after Acrysof ReSTOR SN6AD3 and ReZoom multifocal IOL implantation as regards the contrast sensitivity, point spread function, and modulation transfer function for each IOL.
- 3. Identifying the possible intraoperative and postoperative complications that may affect the quality of vision after multifocal intraocular lens implantation.
- 4. Determination of the methods to optimize the results of multifocal lens implantation.

Review of Literature

The quality of the retinal image in a phakic human eye mainly depends on the optical performance of the cornea and the crystalline lens. Aberrations of the cornea originate mainly from its anterior surface which has a positive spherical aberration. This is neutralized by the negative spherical aberration of the human crystalline lens in youth. (*Artal et al.*, 2002) Cataract development in aging eyes produces positive spherical aberration worsening the quality of vision. Replacing the crystalline lens with a spherical IOL that has a positive spherical aberration will not correct the error created by cataract as the pseudophakic eye now has a large amount of positive spherical aberration due to contributions from both the cornea and the IOL. (*Kershner*, 2003) This alters the functional vision by lowering the contrast sensitivity (CS). (*Mencucci et al.*, 2007)

The modified aspheric IOL has a surface curve that becomes flatter toward the lens periphery the farther it is from the optical center. The benefit of making 1 or both surfaces of the IOL aspheric was analyzed and studies have proved that such a design provided a significant improvement in the retinal image contrast and visual performance. (*Kershner*, 2003)

Despite the improved visual performance after aspheric IOL implantation, most patients with monofocal IOLs remain dependent on spectacles for near vision. Modern cataract surgery enables treatment of cataract and (oncoming) presbyopia in cataract patients. (*Dolders et al.*, 2004) Although monofocal IOLs are effective in improving vision after cataract surgery, the loss of accommodation is not restored by implantation of these IOLs. (*Nijkamp et al.*, 2004)