FINGERPRINTING AND SOME ECOLOGICAL ASPECTS ON CERTAIN HARD SCALE INSECTS IN EGYPT (COCCOIDEA: DIASPIDIDAE)

BY

NAGWAN MOHAMMED HAMDY IBRAHIM

B.Sc.Agric.Sc.(Entomology), Ain Shams University, 2003 M.Sc. Agric.Sc.(Entomology), Ain Shams University, 2009

A thesis submitted in partial fulfillment Of the requirements for the degree of

DOCTOR OF SCIENCES

in

Agricultural Sciences (Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

FINGERPRINTING AND SOME ECOLOGICAL ASPECTS ON CERTAIN HARD SCALE INSECTS IN EGYPT (COCCOIDEA: DIASPIDIDAE)

BY

NAGWAN MOHAMMED HAMDY IBRAHIM

B.Sc. Agric. Sc.(Entomology), Ain Shams University, 2003 M.Sc. Agric. Sc. (Entomology), Ain Shams University, 2009

Under the supervision of:

Dr. Abd El- Rahman Hussein Amin

Prof. Emeritus of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Azza Kamal Abd El Rhman Emam

Prof. Emeritus of Economic Entomology, Department of Plant Protection, Faculty of Agriculture , Ain Shams University

Dr. Ashraf Helmi Fathy Ibrahim

Associated Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

ABSTRACT

Nagwan Mohammed Hamdy Ibrahim: Finger Printing and Some Ecological Aspects on Certain Hard Scale Insects in Egypt.(Hemiptera: Sternorrhyncha: Diaspididae). Unpublished Ph.D. Dissertation, Ain Shams University, Faculty of Agriculture, Department of Plant Protection, Egypt, 2017.

The present work aimed to study some taxonomical and ecological aspects on some diaspid species in Egypt. /as well as molecular genetic techniques. These studies were conducted throughout five successive year 2010- 2014.

Thirty five diaspid species were surveyed on different host plants three of them recorded for the first time in Egypt. Pictorial field key was conducted to facilate identification procedures in the field. Also, bracket pictorial key was constructed to facilate identification in the laboratory. The polymerase chain reaction (PCR) was used to amplify five specific primers. These primers were produced specific bands which used as specific markers for different taxa. Molecular branching key was constructed to facilate identification procedures. Phylogenetic relationships between different taxa were investigated.

Ecological studies on the population dynamics of white mango scale insects, *Aulacaspis tubercularis* and associated natural enemies on mango trees were investigated throughout two successive years (2012 & 2013). Seasonal fluctuation of different developmental stages of this species and associated natural enemies were investigated. Number and duration of annual field generations were estimated. Effects of ten ecological factors (6 physical + 4 biotic) on the changes in population density of this species were investigated. Spatial distribution of different developmental stages of this species as well as on both leaf surface of mango trees were also investigated.

Key words:

Diaspididae, *Aulacaspis tubercularis* ,Molecular genetic, Identification key, Polymerase Chain Reaction, Phylogenetic relationships, Specific primer, Population dynamics, Seasonal fluctuation. Annual generation, Spatial distribution.

ACKNOWLEGMENT

All praises are due to God, who blessed me with kind proffessors and colleagues, and gave me support to produce this thesis.

I wish to express my sincere gratitude to Prof. **Dr. Abdel-Rahman H. Amin**, Emeritus Proffessor of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for suggesting the problem, supervision, kind help and continuous encouragement during these study.

Thanks are also due to **Prof. Dr. Azza K. Emam,** Proffessor Emeritus of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for supervising this work, kind attention and encouragement through the course of implementation of this thesis.

Sincere thank also extend to **Dr. Ashraf Helmi Fathy Ibrahim** Assistant Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University for his supervision and support.

Thanks also extended to all staff members of Plant Protection, Faculty of Agriculture, Ain Shams University.

I also wish to record my thanks to **Dr. Assmaa Mohammed Abu Shady**, Department of Genetic, Faculty of Agriculture, Ain Shams University for her kind help to this work, kind attention and encouragement through the course of implementation of this thesis.

I am highly grateful to spirit of my father and special grateful to my mother, my brother and my sisters for help and gave me the support during my study.

My deepest thanks and gratitude are also due to my husband **Dr. Mohamed Samy Gamal El Deen** safety engineer at Qarun Petroleum Company.

CONTENT

	Page
LIST OF TABLES	
LIST OF FIGURES	
PART I: TAXONOMICAL STUDIES	
I.1.INTRODUCTION	1
I.2. REVIEW OF LITERATURE	3
A. Traditional Taxonomy	3
B. Molecular taxonomy	6
I.3. MATERIAL AND METHODS	15
A. Traditional Taxonomy	15
a. Mounting slides of adult females for identification	
procedure	15
b. Survey, Host plants, distribution and synonmy lists	16
c. Construction of field and laboratory keys	16
B. Molecular taxonomy	17
1. DNA Extraction and Isolation	17
2. DNA isolation	20
3. DNA Agarose Gel preparation	21
4. Polymerase Chain Reaction (PCR) conditions	22
5. Selected Specific Primers	22
6. Action of the five primers	23
7. Reaction PCR	25
8. DNA product application	27
9. Gel analysis and Documentation	27
10. Phylogenetic Relationships	27
11. Quantitative Evaluation	28
I.4. RESULTS AND DISCUSSIONS	29
1. Traditional Taxonomy	29
1.1. Survey of Armoured Scale Insect species Collected from	
Different Localities of Egypt with Their Host Plants and	
Synonmy Lists	29

lecı	ılar Taxon	omy	• • • • • • • • •	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		Genetic				
]	Diaspidida	e species f	rom Egy	pt	• • • • • • • • • • • • • • • • • • • •	•••••
2.1	.1. Genu	s Category	V	• • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	2.1.1.1. U	sed Primer	S	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •
	2.1.1.2. S	pecific ban	ds for ge	nera	• • • • • • • • • • • • • • • • • • • •	•••••
	2.1.1.3. S	pecific PCI	R Profiles	of 14	Genera	•••••
	1. Prin	ner ITS2	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	•••••	•••••
	2. Prim	ner, ITS4, I	TS5	• • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	3. Prim	ner [A. acut	R-1 (r)]	(Oligo	nucleot	ide)
	4. Prim	ner [A. agua	a R-2 (r)	(Olig	gonucleo	tide)
	5. Prim	ner [P. stra	R-3 (r)] (Oligo	nucleotic	de)
2.1	.2. Speci	es categor	y	• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
2	2.1.2.1. Pri	mer used	• • • • • • • • • •	• • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	2.1.2.2.	Specific I	PCR Pr	ofiles	of 3	5 diaspid
	•					
	1. Prin	ner [ITS2 (f	(,r)]	•••••	•••••	•••••
	2. Prim	ner [ITS4, I	TS5]	•••••	•••••	•••••
		primers [A		–	_	` -
		primer [P.				
2.1	.3. Molecu	ılar Branch	ing Key	Used	to Iden	tify Some
	Diaspic	liae species				
		ity Matrix	=	_		_
2	2.1.4.1. M	Iorphologic	cal charac	eters	• • • • • • • • •	•••••
2	2.1.4.2. M	olecular ch	aracters	•••••	•••••	••••••
2		ombination			orpholo	
	mo	olecular ch	aracters.	• • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		GICAL ST				

II.2. REVIEW OF LITERATURE
II.3. MATERIAL AND METHODES
A. Sampling and counting procedures
B. Seasonal fluctuation of insect population
C. Number and duration of annual field generation
D. Effects of some ecological factors on the changes in
insect population
E. Distribution of insect on both surfaces of mongo leaf &
spatial distribution of insect population on mango
trees
II.4. RESULTS AND DISCUSSION
1. Survey of diaspid species infesting mango trees and
associated natural enemies in Qalyubiya Governorate
2. Seasonal fluctuation of different alive developmental stages
of Aulacaspis tubercularis on mango trees in Qalyubiya
Governorate
3. Number and duration of annual field generations of
Aulacarpis tubercularis on mango trees in Qalyubiya
Governorate
4. Effects of some ecological factors on the changes of
population density of Aulacaspis tubercularis infesting
mango trees in Qalyubiya Governorate during two
successive years
4.1. Effect of mean maximum temperature
4.2. Effect of mean minimum temperature
4.3. Effect of mean temperature
4.4. Effect of mean percentage of relative humidity
4.5. Effect of sum rainfall
4.6 . Effect of mean solar radiation
4.7. Effect of number of parasitoid wasps
4.8. Effect of percentages of parasitism

	Page
4.9. Effect of numbers of cheyletid predator mites	230
4.10. Effect of numbers of stigmaeid predator mites	230
4.11. The combined effects of the ten selected ecological	
factors on the changes in the population density of A.	
tubercularis	237
3.5. Distribution of different developmental stages of	
Aulacaspis tubercularis on both leaf surfaces of	
mango leaves under field conditions in Qalyubiya	
Governorate	239
3.6. Spatial distribution of different development stages of	
Aulacaspis tubercularis at different zones of mango	
trees at the farm of Faculty of Agriculture, Qalyubiya	
governorate throughout two successive years	244
III. SUMMARY	252
V. REFERENCES	267
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1.	Names, sequence and molecular molecular size of	
	generic-specific and species-specific used primers	24
2.	List of armoured scale insects with their host plants	
	collected from different localities of Egypt throughout	
	2012-2014	67
3.	Diagnosis Morphological Characters of Diaspididae	
	Adult Female	86
4.	Molecular sizes of bands produced from five primers with	
	generic- specific bands of fourteen diaspid genera	128
5.	Molecular size(s) of generic – specific band (s) produced	
	from 5 primers used to determine 14 diaspid genera	139
6.	Molecular size(s) of some bands could be considered as a	
	group, specific bands produced from 5 primers used to	
	determine 14 diaspid genera	142
7.	Molecular size(s) of bands produced from primer ITS2	
	(f,r) with specific bands of thirty five of diaspid species	157
8.	Molecular size(s) of species – specific band (s) produced	
	from 4 primers (2 single + 2 mix) used to determine 35	
	diaspid species	166
9.	Molecular size(s) of of some bands could be considered	
	as a group, specific bands produced from 4 primers (1	
	single + 3 mix) used to determine 35 diaspid species	170
10.	The taxonomic characters of thirty five diaspid species	
	from Egypt based on female case	176
11.	The dissimilarity matrix of thirty five diaspid species	
	from Egypt based on morphological characters of the	
	female case	179
12.	The three hundred and ten molecular characters for four	
	specific primers to determine thirty five diaspid species	
	from Egypt	184

No.		Page
13.	The dissimilarity matrix of thirty five diaspid species of	
	Egypt based on molecular characters	188
14.	The dissimilarity matrix of thirty five diaspid species of	
	Egypt based on both morphological and molecular	192
	characters	
15.	Half-monthly counts of a live adult females diaspid	
	species on mango trees cultivated at the Farm of Faculty	
	of Agriculture, Ain Shams University Qalyubiya, during	
	2012 year	211
16.	Half-monthly counts of a live adult females diaspid	
	species on mango trees cultivated at the Farm of Faculty	
	of Agriculture, Ain Shams University Qalyubiya, during	
	2013 year	212
17.	Half- monthly counts of different developmental stages	
	of Aulacaspis tubercularis on mango trees (alive	
	individuals /leaf) at the Farm of Faculty of Agriculture,	
	Shoubra El–Kheima, Qalyubiya Governorate during 2012	217
18.	Half- monthly counts of different developmental stages	
	of Aulacaspis tubercularis on mango trees (alive	
	individuals /leaf) at the Farm of Faculty of Agriculture,	
	Shoubra El–Kheima, Qalyubiya Governorate during 2013	218
19.	The actual and accumulated fifteen-day mean numbers of	
	total population/ leaf of Aulacaspis tubercularis on	
	mango trees according to Audemard and Millaire (1975),	
	cultivated at the Farm of Faculty of Agriculture, Ain	
	Shams University Oalvubiya, 2012 year	222

No.		Page
20.	The actual and accumulated fifteen-day mean numbers of	
	total population/ leaf of Aulacaspis tubercularis on	
	mango trees according to Audemard and Millaire (1975),	
	cultivated at the Farm of Faculty of Agriculture, Ain	
	Shams University Qalyubiya, 2013 year	223
21.	Approximated numbers and duration of annual	
	generations of Aulacaspis tubercularis on mango, trees at	
	the Farm of Faculty of Agriculture, Ain Shams	
	University, Shoubra El Kheima, Qalyubiya Governorate,	
	during 2012.	225
22.	Approximated numbers and duration of annual	
	generations of Aulacaspis tubercularis on mango, trees at	
	the Farm of Faculty of Agriculture, Ain Shams	
	University, Shoubra El Kheima, Qalyubiya Governorate,	
	during 2013 year	225
23.	Mean numbers of total population alive individuals / leaf	
45.	of Aulacaspis tubercularis collected at 15 days intervals	
	on mango trees at the Farm of Faculty of Agriculture,	
	Shoubra El–Kheima, Qalyubiya Governorate during 2012	
	season, with the corresponding data of ten ecological	
	factors(4 biotic& 6 physical)	231
24.	Mean number of total population alive individuals / leaf	201
4 7,	of Aulacaspis tubercularis collected at 15 days interval	
	from mango trees planted at the Farm of Faculty of	
	Agriculture, Shoubra El–Kheima, Qalyubiya Governorate	
	during 2013 season, with the corresponding means of ten	
	ecological factors(4 biotic& 6 physical)	234
25.	Results of statistical analysis of simple correlation and	234
45.	-	
	partial regression to investigate the relationship between	
	ten ecological factors and changes in mean numbers total	
	population of <i>Aulacaspis tubercularis</i> on mango trees	
	cultivated at the Farm of Faculty of Agriculture, Shoubra	220
	El–Kheima, Qalyubiya Governorate during 2012	238