EVALUATION SIGNIFCANCE OF INTERLEUKIN-6 IN DIAGNOSIS AND PROGNOSIS OF HEPATOCELLULAR CARCINOMA

THESIS

Submitted for partial fulfillment of MD degree In internal medicine

By **Dr. AHMED ALI ALI IBRAHIM**

M.Sc. in internal medicine

Supervised by **Prof. Dr.Mohamed A.M.Makhlouf**

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Prof. Dr. Amira Ahmed Salem

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Prof.Dr.Wesam Ahmed Ibrahim Mohmed


Assistant Professor of Internal Medicine Faculty of Medicine Ain Shams University

Prof. Dr. Dina El-Sayed El-Shennawy

Assistant Professor of clinical pathology
Faculty of Medicine Ain Shams University
Faculty of Medicine
Ain Shams University

7.17

All braise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfill this thesis, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to Prof. Dr.Mohamed Aly Maraey Makhlouf Professors of Internal Medicine Faculty of Medicine, Ain Shams University for his fatherly attitude, continuous encouragement, his kind support and appreciated suggestions that guided me to accomplish this work.

I am truly grateful to **Prof. Dr. Amira Ahmed Salem** Professors of Internal Medicine, Faculty of Medicine,
Ain Shams University for her keen supervision and guidance
that helped me to perform this work.

I am also grateful to Prof. Dr.Wesam Ahmed Ibrahim Mohmed assistant Professors of Internal Medicine Faculty of Medicine, Ain Shams University for her great support and effort through the whole work.

Special thanks are extended to Prof. Dr. Dina El-Sayed El-Shennawy assistant Professors of Clinical Pathology, Faculty of Medicine, Ain Shams University for her constant encouragement and advice whenever needed.

CONTENTS

Subjects	Page
List of tables	I
List of figures	III
List of abbreviations	V
Introduction	1
Aim of the work	3
Chapter I: Hepatocellular carcinoma	4
- Epidemiology of Hepatocellular Carcinoma	4
- Risk Factors of Hepatocellular Carcinoma	6
- Pathology of Hepatocellular Carcinoma	29
- Diagnosis of Hepatocellular Carcinoma	34
- Staging of Hepatocellular Carcinoma	65
- Surveilance and screening.	69
- Prevention Of Hepatocellular Carcinoma.	
- Treatment of Hepatocellular Carcinoma.	
Chapter II: Cytokines	120
Chapter III: Interlukins and liver disease	142
Patients and methods	146
Results	157
Discussion	177
Summary	185
Conclusion	. 188
Recommendations	189
References	190
Protocol of thesis	
Arabic summary.	

List of Tables

Table No.	Title	Page
1	Frequency of clinical features of HCC	36
2	TNM Staging for HCC	65
3	Okuda Staging Variables	66
4	CLIP scoring system	68
5	BCLC Staging for HCC	68
6	Surveillance for certain Groups of Patients	72
٧	Classification by physicochemical structure	124
	of cytokines and their receptors	
٨	Child-Turcotte Pugh scoring	154
٩	Comparison between the studied groups as	158
	regard general data	
١.	Comparison between the studied groups as	160
	regard symptoms	
11	Comparison between the studied groups as	161
	regard general examination	
١٢	Comparison between the studied groups as	162
	regard local examination	
١٣	Comparison between the studied groups as	163
	regard U/S	
١٤	Comparison between the studied groups as	165
	regard laboratory data	

Table No.	Title	Page
10	Comparison between the studied groups as	167
	regard Child classification	
١٦	Results of hepatitis markers testing in the	168
	three studied groups	
١٧	Comparison between males and females as	169
	regard (IL-6 and IL-1b) among group I	
١٨	Comparison between males and females as	170
	regard (IL-6 and IL-1b) among group II	
١٩	Comparison between males and females as	170
	regard (IL-6 and IL-1b) among group III	
۲.	Comparison between numbers of focal	170
	lesions versus (IL-6 and IL-1b) among	
	group III	
71	Correlation between IL-6 and IL1b versus	171
	different variables among group I	
77	Correlation between IL-6 and IL1b versus	173
	different variables among group II	
74	Correlation between IL-6 and IL1b versus	174
	different variables among group III	
۲ ٤	Validity of IL6 and IL1b in case of HCC	176

LIST OF FIGURES

Figure No.	Title	Page
1	Regional variations of hepatocellular carcinoma	5
2	Diagnostic algorithm for suspected HCC	52
3	Ultrasound scan showing a small hypoechoic HCC	53
4	Ultrasound-guided biopsy of a hypoechoic liver lesion	54
5	Triple-phase contrast-enhanced CT scans showing two foci of HCC	58
6	Typical MRI appearance of HCC	61
7	Treatment Algorithm for HCC	119
8	comparison of mean age between the studied groups	159
9	Comparison of gender between the studied groups	159
10	Comparison between the studied groups as regards degree of encephalopathy	162
11	Comparison between the studied groups as regards degree of Ascites.	163

Figure No.	Title	Page
12	Comparison between studied groups as	164
	regards degree of liver echogenicity	
13	Comparison between the three studied	166
	groups as regards as IL6	
14	Comparison between the studied groups as	167
	regards as IL1b	
15	Child's Classification of the studied groups	168
16	Comparison between the studied groups as	169
	regards as hepatitis markers	
17	Relation between IL-6 and IL-1b	172
18	Relation between IL-6 and blood urea	172
19	Relation between IL-6 and total bilirubin	175
20	Relation between IL-6 and serum albumin	175
21	Relation between IL-1b and serum albumin	175
22	ROC curve of IL-6, IL-1b and AFP serum	176
	level in the studied groups	

LIST OF ABBREVIATIONS

AASLD American Association For The Study of Liver disease

AFP Alpha-fetoprotein

AFP-L3 Lectin-bound alpha-fetoprotein

AFBI Aflatoxin BI

AJCC American Joint Committee on Cancer

AGVHD Acute graft-versus-host disease
 ALT Alanine aminotransferase.
 ALP Alkaline phosphatase

AMA Anti-mitochondrial Antibody.

ANA Antinuclear antibody.
ANF Antinuclear factor.

Anti-LKM1 Antibody to Liver-kidney microsomes.

AST Aspartate aminotransferase.

α₁-AT α₁-Antitrypsin.
 ALF Alpha L Fucosidase.
 AFU Alpha-L-fucosidase

AJCC American Joint committee on cancer

BUN Blood urea nitrogen.

BCLC Barcelona clinic liver cancer.
BCDF B-cell differentiating factor.

BCGF B-cell growth factor
BSF B-cell stimulating factor
BMT Bone marrow transplantation
BDNF Brain-derived neurotophic factor

CEA Carcinoembryoic Antigen.

CEUS Contrast enhanced ultrasound

CKs Ckemokines.

CHB Chronic Hepatitis BCLD Chronic liver disease.CNTE Ciliary neurotrophic factor.

Cr Creatinine.

CT Computed tomography.

CLIP Cancer of the liver Italian program.

CCC Cholangiocarcinoma

D.bilirubin. Direct bilirubin.

DCP Des gamma carboxy prothrombin.

DNA Deoxy-ribo nucleic acid.DUS Doppler ultrasound.

EGF Epidermal growth factor.

ELISA Enzyme linked immunosorbont assay.

Epo Erythropoietin.

ESR Erythrocyte sedimentation rate.

FGF Fibroblast growth factor.
FNH Focal nodular hyperplasia.
FDG fluoro-2-deoxy-D-glucose
FDA Food and Drug administration.
GGT Gamma glutamyl-transferase.

γ-globulin Gamma globulin.

G-CSF Granulocyte colony stimulating factor.

GM-CSF Granulocyte-macrophage colony stimulating factor.

HbsAg Hepatitis B surface antigen.

HBV Hepatitis B virus.

HBIG Hepatitis B immunoglobulin.

HDV Hepatitis D virus.HCV Hepatitis C virus.

HCV Ab Hepatitis C virus antibody.

HFL Hepatic focal lesion.HCC Hepatocellular carcinoma.HAI Histology Activity Index.

HFE Hereditary Hemochromatosis Gene

HIV Human immunodeficiency virus

HSC Hepatic stellate cell.

HSF Hepatocyte-stimulating factor
H-ALP HCC specific alkaline phosphatase

HLA Human leucocyte antigen.HRT Hormonal replacement therapy

IFN Interferon

IGIE Interferon-gamma inducing factor.

IGF Insulin-like growth factor.

IL Interlukin

ICGHN International Consensus Group for Hepatocellular Neoplasia

IOUS Intraoperative ultrasound.

IVC Inferior vena cava

K Potassium.

LCF Liver cell failure.

LGDN Low-grade dysplastic nodulesHGDN high-grade dysplastic nodulesLIF Leukemia inhibitory factor.

Na Sodium.

NASH Non-alcoholic Steatohepatitis

NK Natural killer.
NS Non structural.

NAFLD Non-alcoholic fatty liver disease.

NT Neurotrophin.
NGF Nerve growth factor.

MCT Microwave coagulation ablation.M-CSF Monocyte colony stimulating factor.

MDCT multidetector CT

MELD Model for End-stage Liver Disease

MIF Migration inhibition factor.

MOIVC Membranous obstruction of inferior vena cava.

MRI Magnetic reasonant imaging.

OCP Oral contraceptive pills.

PAI Percutaneous acetic acid injection.

PAF Platelet activating factor.
PCR Polymerase chain reaction

P CEA Polyclonal carcino-embryonic antigen.

PEI Percutaneous ethanol injection
PET Positron emission tomography

PIVKA-II Protein induced by vitamin K absence or antagonist.

PUO Pyrexia of unkown origin.
PTH Parathyroid hormone.

PDGF Platelet derived growth factor.

RIA Radioimmuno essay
RNA Ribo nucleic acid

ROS Reactive oxygen species.
RFA Radiofrequency ablation
SMA Smooth Muscle Antibodies.

SCF Stem cell factor.

TACE Transarterial chemoembolization

TAE Transarterial embolisation.

T. bilirubin Total bilirubin.TCGF T-cell growth factor

TH T helper

TPO Thrombopoietin.

TNM Tumor node metastasis.

TNF Tissue necrosis factor.

TGF Transforming growth factor

UCSF University of California, San Francisco
UNOS United Network for Organ Sharing

US Ultrasound.

VIP Vasoactive intestinal peptide.

VEGF Vascular endothelium growth factor.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and chronic C virus (HCV) infection is a major cause of HCC in the United States, Southern European countries and Japan. (El-Serag and RudophL,2007). The host immune responses to HCV are often not strong enough to completely clear the infection, resulting in chronic stimulation of antigen-specific immune response, hepatocyte damage is induced by the continued expression of cytokines and recruitment of activated inflammatory cells to the liver which is followed by hepatocyte regeneration, this persistent cycle of necro-inflamation and hepatocyte regeneration is thought to provide a mitogenic and mutagenic environment leading to HCC development (Elsharkawy and Mann, 2007).

Interleukin-6(IL-6) is a multifunctional cytokine largely responsible for the hepatic response to infections or systemic inflammation .Serum IL-6 levels are elevated in patients with chronic liver inflammation including alcoholic hepatitis, hepatitis B, HCV infections and steatohepatitis. (Wieckowska et al, 2008).

Serum IL-6 levels are reportedly higher in patients with HCC than in those without *(Porta et al, 2008)*. In chronic hepatitis, IL-6 produced mainly by activated Kupffer cells, intensifies local inflammatory responses and induces compensatory hepatocyte proliferation, facilatiting malignant transformation of hepatocyte *(Naugler and Karin 2008)*.

Giannitrapani et al, 2002 have already reported that IL-6 could be a more sensitive marker in identifying HCCs than alpha fetoprotein which still remains the most commonly used marker for this cancer, even though its real utility for detecting HCC seems to be limited especially in Europe, where the number of HCCs poorly expressing alpha fetoprotein seems to be increasing, probably reflecting a more differentiated phenotype. (Giannitrapani et al, 2002).

Porta et al, 2008 have reported that circulating IL-6 is significantly higher in HCC patients than in cirrhotic patients and IL-6 values were highest in patients with more advanced disease. This may of value in prognosis of hepatocellular carcinoma (Porta et al, 2008).

Aim of THE Work

To evaluate the significance of interleukin 6 in diagnosis of hepatocellular carcinoma in comparison to serum alpha fetoprotein and this may also of value in prognosis of hepatocellular carcinoma.