

Sugammadex: New Emerging Antidote for Muscle Relaxants

An essay submitted for the partial fulfillment of Master Degree in Anesthesia

Presented by

Sara Hassan Attia

M. B., B. Ch. Faculty of Medicine - Cairo University

Supervised by

Prof. Dr. Ibrahim Abdel Ghani Ramadan

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Prof. Dr. Mohammed Sidky Mahmoud

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Akram Mohammed Amer

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2016

بني لينهُ البَّمْ الرَّحِينَ مِ

وَّ قَالُوا سُبْحَانُكَ لا عِلْمَ لَنَا إِلَّا مَا عَلَّمْنَنَا الْعَلِيمِ الْحَدَيمِ الْمُنْ الْعَلِيمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْحَدَيمِ الْحَدَيمِ الْعَلِيمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْعَلِيمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْعَلَيْمِ الْحَدَيمِ الْحَدَيمُ الْحَدَيمُ الْحَدَيمِ الْحَدَيمِ الْحَدَيمِ الْحَدَي

سورة البقرة الآيــه رقم ٣٢

Acknowledgement

Thanks first and last to **ALLAH** as we owe him for his great care, support and guidance in every step of our life.

Special appreciation and thanks to my advisor **Professor Dr. Ibrahim Abdel Ghani,** professor of Anesthesiology, Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Shams University. Without his assistance and dedicated involvement, this assay would have never been accomplished.

Deepest gratitude to **Professor Dr. Mohammed**Sidky, professor of Anesthesiology, Intensive Care Medicine
and Pain Management, Faculty of Medicine, Ain Shams
University, who was abundantly helpful and offered
invaluable assistance, support and guidance.

My sincere thanks also goes to **Dr. Akram Amer**, Lecturer of Anaesthesiology, Intensive Care Medicine and Pain Management, Faculty of Medicine, Ain Shams University for his insightful comments and encouragement.

Finally, I must express my very profound gratitude to my parents for providing me with unfailing support and continuous encouragement.

Contents

List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction and Aim of the essay	1
Chapter 1: Neuromuscular transmission	4
Chapter 2: Review of neuromuscular blocking agents	20
Chapter 3: Conventional neuromuscular blockade	
reversal	52
Chapter 4: Recent neuromuscular blockade reversal age	ent
(Sugammadex).	68
Summary	100
References	103
Arabic Summary	

List of Abbreviations

ACh Acetylcholine

AChE Acetylcholinesterase AChR Acetylcholine receptors AMG Acceleromyography

APTT Activated partial thromboplastin time

CDs Cyclodextrin

CICV cannot intubate cannot ventilate

CL CR Creatinine clearance
DBS Double burst stimulation

DMD Duchenne Muscular Dystrophy

dTc d-tubocurarine

ECT Electrocompulsive therapy

EMG Electromyography

GABA Gamma Amino Butyric Acid

HR Heart rate

HVD Hypoxic ventilatory response

kDa kiloDalton

KMG Kinemyography

MAP Mean arterial pressure

MEPPs Miniature end-plate potentials

MG myasthenia gravis
MMG Mechanomyography
MuSK Muscle-specific kinase

mV milliVolt

nAChRs Nicotinic acetylcholine receptors

List of Abbreviations (Cont.)

NDMRs Non depolarizing muscle relaxants

NMB Neuromuscular blockade

NMBA Neuromuscular blocking agents NMBD Neuromuscular blocking drug

NMJ Neuromuscular junction

NPPE Negative Pressure Pulmonary Edema

NRb Neuregulins

PACU Post anesthesia care unit

PMG Phonomyography

PONV post-operative nausea and vomiting

PT prothrombin time

PT(INR) International normalized ratio for PT

PTC Post-tetanic count QTc QT-prolongation

RSI Rapid Sequence Induction

SC Schwann cell SCh Succinylcholine

SNAP- synaptosomal-associated protein-25

25

SNARE Soluble N-ethylmaleimide sensitive- factor

attachment receptor

SRBA Selective relaxant binding agent $t_{1/2\beta}$ Terminal elimination half-life total intra-venous anesthesia

TOF Train of four

List of tables

Table	Title	Page
1	Different neuromuscular blocking agents	35
2	Factors Influencing the Measured	37
	Incidence of Postoperative Residual	
	Neuromuscular Blockade	
3	Patterns of Neuromuscular Stimulation	46
4	Dose recommendation for rocuronium	78
	after sugammadex use	
5	Pharmacokinetic profile of sugammadex	80
	in adults	

List of Figures

Fig.	Title	Page
1	The motor nerve	5
2 3	Adult neuromuscular junction	7
3	A presynaptic action potential	9
4	Main proteins that interact to produce	12
	synaptic vesicle docking and fusion in	
	nerve endings	
5	Three-dimensional model of the	16
	nicotinic acetylcholine-gated ion	
	channel	
6	Action of neuromuscular blockers	19
7	Structural relationship of	22
	succinylcholine and acetylcholine	
8	Chemical structure of the steroidal	30
	muscle relaxants	
9	Chemical structure of vecuronium	31
10	Patterns of stimulation: Single twitch	41
	stimulation	
11	Patterns of stimulation: train of four	41
12	DBS	43
13	Patterns of stimulation: tetany	43
14	Pattern of evoked muscle responses	47
15	The cyclical structure of sugammadex	71
16	Tri-dimensional structure of	72
	sugammadex	
17	crystal structure of a rocuronium	74
	molecule and a sugammadex	
18	Encapsulation of rocuronium	74

Introduction

Since the introduction of curare in 1912 to produce surgical relaxation in anesthetized patients, neuromuscular blocking agents (NMBAs) have allowed us to immobilize patients and improve medical and surgical interventions (*Naguib and Brull, 2009*).

The clinical use of NMBAs in anesthesia has come a long way since then and the practice of anesthesia has witnessed the introduction of many new non-depolarizing neuromuscular blockers that are close to ideal with significant clinical advantages and minimized side effects as compared with older compounds such as d-tubocurarine and pancuronium (*Raghavendra*, 2002).

Unfortunately, reports of residual post-operative weakness, incomplete recovery and undesired ventilatory effects have continued to appear and no substantial progress has been made in the area of neuromuscular antagonism (*Naguib*, 2007).

The cholinesterase inhibitor drugs first used to reverse curare currently remain the standard for reversing all NMBAs. The indirect action of cholinesterase inhibitors is

Introduction and Aim of the Essay

limited in its ability to reverse neuromuscular blockade, and is associated with numerous side effects (*Welliver et al.*, 2009).

Few studies have attempted to explore the potential of non-classic reversal drugs. In this regard, suramin; a P2-purinoceptor antagonist, can reverse non-depolarizing neuromuscular blockade, but it has serious side effects that render it inapplicable for routine clinical use (*Fields and Vadivelu*, 2007).

A new class of drugs, selective relaxant binding agents (SRBAs), can reverse residual paralysis and has the potential to overcome the limitations of cholinesterase inhibitors. The first SRBA to be introduced is sugammadex. Unlike the cholinesterase inhibitors, which indirectly and competitively antagonize NMBAs by increasing acetylcholine (ACh), sugammadex acts by directly encapsulating, binding, and inactivating NMBAs (Welliver et al., 2009).

Introduction and Aim of the Essay

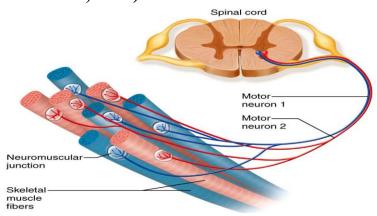
Aim of the Essay

This essay is directed towards highlighting the recent class of neuromuscular blockade reversal agent; Sugammadex, and its unique mechanism of action, and to discuss differences between it and the classic neuromuscular blockade reversal agents.

Neuromuscular Transmission

Neuromuscular junction (NMJ) is a refined structure geared to ensure a rapid and efficient transmission of an action potential into depolarization of the postsynaptic target organ, the muscle (*Hoch*, 1999).

Organization of the neuromuscular junction:


Consideration of the structure and function of the mature NMJ can be conveniently divided into presynaptic, synaptic, and postsynaptic components (*Hirsch*, 2007).

1. Presynaptic Components:

The motor neuron runs without interruption from the ventral horn of the spinal cord or medulla to the NMJ as a large, myelinated axon. As it approaches the muscle, it branches repeatedly to contact many muscle cells and to gather them into a functional group known as a motor unit. The architecture of the nerve terminal is quite different from that of the rest of the axon. As the terminal reaches the muscle fiber, it loses its myelin to form a spray of terminal branches against the muscle surface and is covered by Schwann cells (SC) (figure 1) (Martyn et al., 2009).

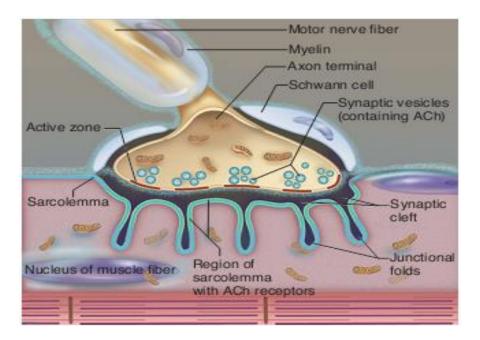
Here, the SC anchors the nerve to the muscle membrane. In addition to providing stability and secreting growth and trophic factors, they also participate in axon development and synaptic formation from the fetal state and throughout life. SCs control the number of NMJs and remove superfluous (unnecessary) pre-synaptic nerve terminals, especially during re-innervation, for instance, after crush injury (*Khirwadkar and Hunter*, 2012).

Both nicotinic and muscarinic receptors are found presynaptically on the motor nerve terminal and are involved in modulation of the release of ACh into the NMJ and they have been attributed with both excitatory and inhibitory roles (*Dand and Lien*, 2009).

FIGURE 1: The motor nerve originates in the ventral horn of the spinal cord or brainstem. As the nerve approaches its muscle fibers and before attaching itself to the surface of the muscle fiber, the nerve divides into branches that innervate many individual muscle fibers. Each muscle receives only one synapse. The motor nerve loses its myelin and further subdivides into many presynaptic buttons to terminate on the surface of the muscle fiber (*Martyn*, 2015).

Before fusing with the presynaptic plasma membrane to release the neurotransmitter into the synaptic cleft, synaptic vesicles have to be recruited to and docked at a specialized area of the presynaptic nerve terminal; the active zone. Exocytosis of synaptic vesicles is restricted to the presynaptic active zone, which is characterized by a unique and highly interconnected set of proteins (*Michel et al.*, 2015).

2. Synaptic cleft:


The synaptic cleft measures 50 nm from the motor neuron to the post-synaptic muscle membrane (*Khirwadkar and Hunter*, 2012).

The nerve and muscle are held in tight alignment by protein filaments called basal lamina, which span the cleft between nerve and end plate (*Martyn*, 2015).

3. Post junctional Components:

The muscle surface is heavily corrugated, with deep invaginations of the junctional cleft; the primary and secondary clefts, between the folds in the muscle membrane; thus the end plate's total surface area is very large. The depths of the folds also vary between muscle types and species (*Martyn*, 2015).

On the shoulder of these folds, nAChRs cluster at high density; approximately 5 million of them in each junction and are anchored into the cell membrane by a complex system of cytoskeletal proteins, for example, dystroglycans. AChRs are sparse in the depths between the folds. Instead, these deep areas contain sodium channels (**figure 2**) (*Cory*, 2002).

FIGURE 2: Adult neuromuscular junction with the three cells that constitute the synapse: the motor neuron, muscle fiber, and Schewann cell. The motor neuron from the ventral horn of the spinal cord innervates the muscle. Each fiber receives only one synapse. The motor nerve loses its myelin and terminates on the muscle fiber. The nerve terminal, covered by a Schewann cell, has vesicles clustered about the membrane thickenings, which are the active zones, toward its synaptic side and mitochondria and microtubules toward its other side. A synaptic gutter, made up of a primary and many secondary clefts, separates the nerve from the muscle. The muscle surface is corrugated, and dense areas on the shoulders of each fold contain acetylcholine receptors. Sodium channels are present at the cleft and throughout the membrane (*Miller*, 2010).