

SAMPLE PLAN CREATION AND FULL CHIP COVERAGE FOR OPTICAL PROXIMITY CORRECTION MODELS

By

Mohammad Kamel Abdelfattah Kamel Moawad

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

SAMPLE PLAN CREATION AND FULL CHIP COVERAGE FOR OPTICAL PROXIMITY CORRECTION MODELS

By Mohammad Kamel Abdelfattah Kamel Moawad

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Under the Supervision of

Prof. Dr. Ahmed Hussein Khalil

Dr. Hossam Aly Hassan Fahmy

Professor of Electronics
Electronics and Communications
Department
Faculty of Engineering, Cairo University

Associate Professor of Electronics
Electronics and Communications
Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

SAMPLE PLAN CREATION AND FULL CHIP COVERAGE FOR OPTICAL PROXIMITY CORRECTION MODELS

By Mohammad Kamel Abdelfattah Kamel Moawad

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Approved by the

Examining Committee
Prof. Dr. Ahmed Hussein Khalil
Dr. Hossam Aly Hassan Fahmy
Prof. Dr. Serag El Din Habib, Internal Examiner
Prof. Dr. Diaa Abdel Maguid Mohamed Khalil, External Examiner Electronics and Communications Department, Faculty of Engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Mohammad Kamel Abdelfattah

Kamel Moawad

Date of Birth: 24/12/1985 **Nationality:** Egyptian

E-mail: eng.muhammadkamel@gmail.com

Phone: 01224270824

Address: 1 Abdelwahab Mahgoub – Ahmed

Oukasha- Boulaq Eldakrour

Registration Date: 1/10/2007
Awarding Date: .../.../......

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Ahmed Hussein Khalil

Associate Prof. Hossam Aly Hassan Fahmy

Examiners:

Prof. Diaa Abdel Maguid Mohamed Khalil, Ain Shams University

Prof. Serag El Din Habib Prof. Ahmed Hussein Khalil Prof. Hossam Aly Hassan Fahmy

Title of Thesis:

SAMPLE PLAN CREATION AND FULL CHIP COVERAGE FOR OPTICAL PROXIMITY CORRECTION MODELS

Key Words:

Photolithography; Resolution Enhancement techniques; Optical Proximity Correction; Modeling; Simulation

Summary:

Photolithography is used in integrated circuit manufacturing. Feature reduction challenge requires resolution enhancement techniques with the limitations imposed on the wavelength used. Optical proximity correction is one of the resolution enhancement techniques. Optical proximity correction requires predictive process models. In this study, a new methodology is introduced for the sample plan creation based on full chip image parameter coverage analysis. The generated sample plan aims to provide more predictive photoresist models for the lithography process.

Acknowledgments

First I thank ALLAH for giving me the strength and guidance that I needed to complete this work.

I would like to thank my supervisors Dr. Ahmed Hussein and Dr. Hossam Fahmy for their continuous support, guidance, and understanding that they gave me throughout my work.

I would deeply thank Dr. Jochen Schacht for his ideas, guidance, and the review of this work.

Many thanks to Mohamed Al-Imam, Hesham Maaty, Tamer Desouky, Ayman Yehia, Mohamed Gheith, Rami Fathi and Mohamed Bahnas from Mentor Graphics Egypt who started the work of Resolution Enhancement Techniques in Egypt. Their help and cooperation through the past 7 years will not be forgotten.

I would like to thank Mentor Graphics for supporting my conference paper and for providing me the necessary software and hardware to complete this work.

I would like to thank my family for their support, encouragement, and guidance during the past 30 years.

Dedication

To Kamel & Hoda

Contents

A	ckno	wledgr	ments		Ι
D	edica			II	
Ta	able (tents		III	
Li	ist of	figure	es		VIII
Li	ist of	tables	8		XI
Li	ist of	symbo	ols and abbreviations		XII
\mathbf{A}	bstra	ıct			XII
1	Intr	oduct	ion		1
	1.1	Motiv	ration		 . 1
	1.2	Thesis	s Structure	•	 . 4
2	Lith	ograp	hy and Image Formation		5
	2.1	Introd	luction		 . 5
	2.2	Integr	rated Circuit Fabrication		 . 5
		2.2.1	Patterning Process		 . 6
	2.3	Lithog	graphy Process Basics		 . 7
		2.3.1	Substrate Preparation		 . 7
		2.3.2	Photoresist Coating		 . 9
		2.3.3	Post-apply Bake		 . 10
		2.3.4	Alignment and Exposure		 . 10
		2.3.5	Post-exposure Bake		 . 12
		2.3.6	Resist Development		. 12

		2.3.7	Postbak	e	13				
		2.3.8	Measure	and Inspect	13				
		2.3.9	Pattern	Transfer	14				
			2.3.9.1	Deposition	14				
			2.3.9.2	Selective Doping	14				
			2.3.9.3	Etching	15				
		2.3.10	Resist S	${ m trip}$	15				
	2.4	Basic	Physics of	f Optical Lithography	15				
		2.4.1	Basic In	naging Theory	16				
			2.4.1.1	Diffraction	16				
			2.4.1.2	Diffracted Image Reconstruction	18				
			2.4.1.3	Latent Image	21				
3	Res	olution	n Enhan	cement Techniques and Modelling	24				
	3.1			· · · · · · · · · · · · · · · · · · ·	24				
	3.2			ancement Techniques	24				
		3.2.1		on	24				
		3.2.2		on Enhancement Techniques	26				
			3.2.2.1	Optics Improvement	26				
			3.2.2.2	K_1 Reduction Techniques	29				
	3.3	Techno	ology Noo	le Development Cycle	35				
		3.3.1	Process	Modelling Test Pattern Mask Generation	36				
		3.3.2	Sample	Plan Creation	37				
		3.3.3		ng	38				
		3.3.4	Optical	Proximity Correction Flow	40				
		3.3.5	Optical	Proximity Correction Verification	41				
	3.4	Proble	em Definit	tion	42				
4	Full	Chip	Image P	Parameters Analysis and Sample Plan Creation	45				
-	4.1	_			45				
	4.2			e Parameter Coverage	45				
	= · =	4.2.1	-	re	45				
		4.2.2		tails	47				
	4.3			ng Test Pattern Mask Generation Flow	50				
		1 Tocess Modelling Test I attent Mask Generation Flow							

		4.3.1	Objective
		4.3.2	Flow Details
		4.3.3	Additional Considerations
	4.4	Model	ling Sample Plan Generation
		4.4.1	Objective
		4.4.2	Flow Details
		4.4.3	Additional Considerations
5	Res	ults	58
	5.1	Introd	uction
	5.2	Full C	Chip Image Parameter Coverage
		5.2.1	Testcase Conditions
		5.2.2	Flow Implementation
			5.2.2.1 Discussion
	5.3	Test p	eattern Mask Generation
		5.3.1	Flow Requirements
		5.3.2	Patterns Definition
			5.3.2.1 Discussion
		5.3.3	Test Pattern Compilation
		5.3.4	Test Pattern Placement
		5.3.5	Mask Review Process
			5.3.5.1 Discussion
	5.4	Model	ling Sample Plan Generation
		5.4.1	Discussion
	5.5	Verific	eation and Comparison
		5.5.1	Stage 1: Model Verification
			5.5.1.1 Discussion
		5.5.2	Stage 2: Full Chip Verification
			5.5.2.1 Long lines 1D
			5.5.2.2 Line Ends and Space Ends
			5.5.2.3 Discussion
6	Sun	nmary	and Future Work 96
	6.1	Summ	ary 96

6.2	Future V	Vork	 	 	 	 97
Refere	nces					99

List of Figures

1.1	Design to Silicon Flow	2
2.1	Cross Section of n-well CMOS Process	6
2.2	Lithography process sequence	8
2.3	Standing waves effect in the photoresist [1]	12
2.4	SEM photography showing influence of post-exposure bake on resid-	
	ual standing-wave ridges in AZ-1350J resist. [2]	13
2.5	Generic Projection Imaging System	16
2.6	Comparison of the diffraction regions where various approximations	
	are accurate	17
2.7	Array of equal lines and spaces and the resulting Fraunhofer diffrac-	
	tion patterns	19
2.8	Numerical Aperture	20
3.1	Critical dimensions defining digital semiconductor circuits for the	
	poly layer between 2011 to 2018 [3]	26
3.2	Wavelength in nm and the min. feature size versus time in years $. $.	27
3.3	Resolution in nm as a function of the numerical aperture NA, $k_1 =$	
	$0.415,\lambda=193\mathrm{nm},\mathrm{equal}$ line and spaces , DOF refers to the depth of	
	focus. Depth of focus is defined as the range of focus that keeps the	
	resist profile for a given feature within the specifications line width [1].	28
3.4	2D and other proximity defects due to diffraction and process effects [4].	30
3.5	Rule-based OPC from a lookup table [4]	31
3.6	Model based OPC Flow Chart	32
3.7	Example of model-based OPC: the original design (upper left) prints	
	very poorly (upper right). After model-based OPC, the resulting	
	design (lower left) prints very close to the desired shape (lower right) [1].	34

3.8	Focusexposure matrices (Bossung curves) for (a) dense and (b) iso-	
	lated 130-nm features (isolated lines biased to give the proper linewidth	
	at the best focus and exposure of the dense lines, λ 248 nm, NA =	
	0.85, quadrupole illumination optimized for a 260-nm pitch)	35
3.9	Impact of inserting SRAF for isolated contact	36
3.10	Steps to generate the mask for a certain design	37
3.11	(a) showing the site placement along the edge of the fragment, (b)	
	showing the aerial image profile on the site location	40
4.1	Image Parameters Evaluation Site	46
4.2	Full Chip Image Parameter Coverage Analysis Flow	48
4.3	IPSE Checker Board	50
4.4	Modelling Test Pattern Mask Flow	51
4.5	Sample Plan Generation Flow	55
5.1	Full Chip Image Parameter Coverage Analysis Checker Board with-	
	out Artefacts	60
5.2	Full Chip Image Parameter Coverage Analysis Checker Board with	
	Artefacts	61
5.3	Full Chip Image Parameter Coverage Analysis Overlay with/without	
	Artefact Fragments	62
5.4	A Concaver Corner Fragment	63
5.5	Seed test patterns image parameters overlay with the full chip image	
	parameter space	65
5.6	Classified Seed Test Patterns Image Parameters Overlay with the	
	Full Chip Image Parameters Space	67
5.7	Region C, Row 4: Seed test pattern versus full chip fragments image	
	parameter analysis	69
5.8	H Structure Geometrical Difference	70
5.9	Region C, Row 3: Seed test pattern versus full chip fragments image	
	parameter analysis	71
5.10	Region C, Row 2: Seed test pattern versus full chip fragments image	
	parameter analysis	72

5.11	parameter analysis	73
F 10		10
5.12	Overlay between the full chip and the test pattern mask. The green	
	triangles represent the test pattern mask image parameters and the	
	pink diamonds represent the full chip fragments image parameters	76
5.13	First iteration over lap between the selected sample plan and the full	
	chip	79
5.14	Second iteration overlap between the selected sample plan and the	
	full chip	80
5.15	Third iteration overlap between the selected sample plan and the full	
	chip	81
5.16	Fourth iteration over lap between the selected sample plan and the	
	full chip	82
5.17	Overlapped graphs of I_{min} versus I_{max} for both the selected test pat-	
	terns and the full chip	86
5.18	Overlapped graphs of slope versus I_{max} for both the selected test	
	patterns and the full chip	87
5.19	Comparison Flow of Models Generated Using the Full Chip Sample	
	Plan and the Heuristic Sample Plan	89
5.20	A histogram showing the difference between the two contours for the	
	1D structures generated from the two models calibrated	93
5.21	A histogram showing the warning level differences between the two	
	contours for the 2D structures generated from the two models calibrated	94
5.22	A histogram showing the difference between the two contours. The	
	x-axis represents the difference between the contour edges at the long	
	lines of the target contour in um. The y-axis represents the count of	
	the differences in each bucket. The differences between the contours	
	is between 1nm to 4nm	95