Antibacterial efficacy of a mouthwash containing hydroxyapatite nanoparticles in combination with chlorhexidine/fluoride

A thesis submitted to the Faculty of Oral and Dental Medicine, Cairo University in partial fulfillment for the requirements of Master degree in Operative Dentistry

By

Omnia Magdy Mostafa

B. D. Sc. (Cairo University, 2008)

Faculty of Oral and Dental Medicine
Cairo University

2015

Supervisors

Dr. Enas Hussein Mobarak

Professor, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

Dr. Mohamed Riad Farid

Professor, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

Dr. Heba Ahmed El-Deeb

Associate Professor, Operative Dentistry

Department

Faculty of Oral and Dental Medicine
Cairo University

Judgment committee

Dr. Mona Ismail Riad

Professor, Operative Dentistry Department

Faculty of Oral and Dental Medicine

Cairo University

Dr. Mohamed El yasaky

Professor, Operative Dentistry / Department Al-Azhar University Girls

Dean of Faculty of Dental Medicine / Sinai University

Dr. Enas Hussein Mobarak

Professor, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

Dr. Mohamed Riad Farid

Professor, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

Dr. Heba Ahmed El-Deeb

Associate Professor, Operative Dentistry Department
Faculty of Oral and Dental Medicine
Cairo University

List of Contents

	Page
LIST OF TABLES	iii
LIST OF FIGURES	iv
INTRODUCTION	1
REVIEW OF LITERATURE	3
I- Antibacterial effect of chlorhexidine	3
II-Contradicting results about sodium fluoride	13
III-Antibacterial effect of mouthwash containing	
hydroxyapatite nanoparticles	17
AIM OF STUDY	23
MATERIALS AND METHODS	24
Materials	24
Methods	28
1-Design of the study	28
2-Preparation of the selective media	29
2.1- Preparation of the selective media for Streptococcus mutans	29
2.2- Preparation of selective media for Lactobacillus acidophilus	31
3-Determination of bacterial concentration by serial dilution method .	32
3.1- Determination of optical density by spectrophotometer	35
3.2- viable bacterial counting	35
4- Antibacterial preparation	37
5-Preparation of the inoculums	38
6-Assessment of antibacterial activity	38
7-Statistical analysis	40
PECI TC	41

DISCUSSION	52	
SUMMARY AND CONCLUSIONS	61	
REFERENCES	63	
ARABIC SUMMARY	-	

List of Tables

	Page
Table (1): Antimicrobials of the study	27
Table (2):Variables of the study	28
Table (3):Interactions of variables	29
Table (4):Results of the two-way analysis of variance (ANOVA)	41
Table (5):Mean and standard deviation of antibacterial inhibition zone	
of the tested antibacterials on the tested bacterials strains	43
Table (6): Mean and standard deviation of antibacterial inhibition zone	
of chlorhexidine on both tested bacterial strains	45
Table (7): Mean and standard deviation of antibacterial inhibition zone	
of sodium fluoride on both tested bacterial strains	46
Table (8):Mean and standard deviation of antibacterial inhibition zone	
of Hydroxyapatite microclusters containing mouthwash	
(HAPMC) on both tested bacterial strains	47
Table (9):Mean and standard deviation of antibacterial inhibition zone	
of Hydroxyapatite microclusters containing mouthwash	
(HAPMC) combined with chlorhexidine on both tested	
bacterial strains	49
Table (10): Mean and standard deviation of antibacterial inhibition	
zone of Hydroxyapatite microclusters containing	
mouthwash (HAPMC) combined with sodium fluoride on	
both tested bacterial strains.	50

List of Figures

	Page
Figure (1): Streptococcus mutans	24
Figure (2): Lactobacillus acidophilus	24
Figure (3): Chlorhexidine diacetate powder	25
Figure (4): Sodium fluoride powder	26
Figure (5): Zinc-carbonate hydroxyapatite nanoparticels containing	
mouthwash (Dr.Wolff's Biorepair)	26
Figure (6): Brain heart infusion (BHI) broth	30
Figure (7): The four digit sensitive balance used in the study	30
Figure (8): The 100 ml graduated flask containing sterilized prepared	
agar	31
Figure (9): De Man, Rogosa and Sharpe (MRS) agar	32
Figure (10): The vortex mixer	33
Figure (11): The shaker	34
Figure (12): The automatic micropipette	34
Figure (13): Spectrophotometer	35
Figure (14): The incubator	36
Figure (15): Counting of the bacterial colonies	37
Figure (16): Cork porer	38
Figure (17): Micropipette	39
Figure (18): Effect of the tested antibacterial on the tested bacterial	
strain	44

Figure (19): Effect of chlorhexidine on both tested bacterial strains	45
Figure (20): Effect of sodium fluoride on both tested bacterial strains	46
Figure (21): Effect of Hydroxyapatite microclusters containing	
mouthwash (HAPMC) on both tested bacterial strains	48
Figure (22): Effect of Hydroxyapatite microclusters containing	
mouthwash (HAPMC) combined with chlorhexidine on both	
tested bacterial strains	49
Figure (23): Effect of Hydroxyapatite microclusters containing	
mouthwash (HAPMC) combined with sodium fluoride on	
both tested bacterial strains	51

Acknowledgments

My gratitude and thanks to Allah for his uncountable mercies, in my desperate weakness and in the blessed times

I would like to express my sincere appreciation to my supervisor **Dr. Mohamed Riad Farid**, Professor, Operative Dentistry Department,

Faculty of Oral and Dental Medicine, Cairo University, for accepting me in
this critical time and for his unlimited support and help to complete this
work. He is my Godfather in operative dentistry department.

I owe a special debt of gratitude with great appreciation and admiration to my supervisor **Dr. Enas Hussein Mobarak**, Professor, Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University, she provided insights, experts, and constructive criticism with great sensitivity, and overwhelming guidance which enabled me to accomplish this work.

A special acknowledgment is goes my co-supervisor, **Dr. Heba Ahmed El-Deeb**, Associate Professor, Operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University for her special gifts in analytical thinking, her ability to motivate others to study, and to her continuous encouragement throughout stages of this thesis.

Heartfelt thanks to **Dr. Mohsen Abi-Elhasan**, head of operative Dentistry Department, Faculty of Oral and Dental Medicine, Cairo University for his unlimited support and care until this thesis see the light.

My gratitude should also be expressed to my colleague **Reham Nabil Mahmoud**, Administrator, Operative Dentistry Department Faculty of Oral and Dental Medicine, Cairo University, for her continuous support in this study.

Dedication

To my precious parents,

For their subjective love, valuable blessings and prayers.

To my scarifying husband,

For his endless support and patience.

To my lovely daughter karma,

For her inspiration.

I dedicate this work

Introduction

Clinical decision-making and the balance between preventive and surgical intervention have become an important part of daily dental practice (Autio-Gold et al., 2008). Some dental schools and private practitioners have implemented specific medical models for caries management and published their protocols (Doméjean-Orliaguet et al., 2006 and Guzman-Armstrong and Warren 2007).

In the era of these medical models of caries treatment renewed interest in developing an antimicrobial approach for the management of dental caries. In conjunction with this concept, control and prevention of caries has been sought by reducing the number of colonizing bacteria. Reducing their level in the oral cavity will provide an additional rationale for the prevention of dental caries (**Pallavi et al., 2011**).

Chlorhexidine (CHX) has been known as an excellent broad spectrum antibacterial compound (**Denton et al., 1991**). Nevertheless, the reported frequent side effects including taste perception alteration and an increase in tooth discoloration (**Wang et al., 2007 and Soares et al., 2011**) makes the use of CHX in dental practice questionable.

Also, fluoride is one of the most important and effective component in dental caries prevention programs (Adair et al., 2006). The mechanisms by which fluoride prevents dental caries may involve at least two major routes (Featherstone et al., 1999); inhibition of tooth mineral dissolution by acid, and enhancement of remineralization in carious lesions. In addition, many studies have also shown that fluoride can affect the biological ability of *Streptococcus mutans* which is the one of the causative factor of dental caries (Hamilton et al., 1990 and Marquis et al., 2003).