Respiratory emergencies in ICU

Essay

Submitted for the partial fulfillment of the master degree in critical care medicine

By

Mohsen Mohamed Azzam

Supervised by

Prof. Dr. Madiha Matwly Zidan

Professor of Anesthesiology & Critical care

Faculty of Medicine

Ain Shams University

Prof. Dr. Noha Mohamed Elsharnoby

Professor of Anesthesiology & Critical care

Faculty of Medicine

Ain Shams University

Prof. Dr. Manal Mohamed Kamal

Assistant Professor of Anesthesiology & Critical care

Faculty of Medicine

Ain Shams University

Faculty of Medicine

Ain Shams University

2010

Contents

List of abbreviations	Page I-III
List of figure	Page IV- V
List of tables	Page VI
Introduction	Page 1-2
Aim of work	Page 3
Review of literature	
Chapter One: Anatomy and physiology of respiratory system	Page 4- 19
Chapter Two: Different causes of respiratory	Page 20-29
emergencies in ICU	
Chapter Three: Signs and symptoms	Page 30- 48
commonly presenting in respiratory	
emergencies in ICU	
Chapter Four: Monitoring of respiratory	Page 49-80
function during respiratory emergencies:	
Chapter Five: Treatment of respiratory	Page 81-116
emergencies in ICU	
Summary	Page 117- 120
References	Page 121-152
Arabic summary	

List of abbreviations

AARC	American Association for Respiratory Care
ALI	Acute lung injury
APRV	Airway pressure release ventilation
ARDS	acute respiratory distress syndrome
As	surface area
BAL	bronchoalveolar lavage
BNP	B-type natriuretic protein
BTS	British Thoracic Society
CBF	cerebral blood flow
C_{DYN}	Dynamic compliance
CMV	conventional mechanical ventilation
CO_2	carbon dioxide
COPD	chronic obstructive pulmonary disease
C_{ST}	Static compliance
CT	computed tomography
C_{TL}	Compliance
D	Diffusion
DLO_2	The diffusing capacity for oxygen
DTI	Difficult tracheal intubation
DVT	Deep vein thrombosis
ECLS	extracorporeal life support
EELV	end-expiratory lung volume
EIT	electrical bioimpedance tomography
El, _{lung}	elastance of the lung
El _{cw}	elastance of the chest wall
ERV	The expiratory reserve volume
ETT	endotracheal tube
EVLW	extravascular lung water
FiO ₂	inspired fraction of oxygen
FOI	Fiberoptic intubation
FRC	functional residual capacity
FRC	The functional residual capacity
HFOV	High-frequency oscillatory ventilation
HIT	Heparin-induced thrombocytopenia
IAP	intra-abdominal pressure
IC	The inspiratory capacity
ICP	intracranial pressure
ICU	intensive care unit
IL	Interleukin
LIP	lower inflection point
LMA	The laryngeal mask airway

LMWH	Low molecular weight heparin
LV	Liquid ventilation
MMPs	matrix metalloproteinases
MW	molecular weight
NIV	Noninvasive ventilation
P/V	pressure/volume
P	Partial pressure difference of the gas
P _{0.1}	occlusion pressure
PaCO ₂	arterial partial pressure of carbon dioxide
PaO ₂	arterial partial pressure of oxygen
P _{aw}	airway pressure
PCO ₂	partial pressure of carbon dioxide
PE	Pulmonary embolism
P_ECO_2	partial pressure of carbon dioxide in mixed expired gas
PEEP	positive end-expiratory pressure
P _{El,lung}	transpulmonary pressure
P _{es}	esophageal pressure
PetCO ₂	end-tidal partial pressure of carbon dioxide
PFC	Perfluorochemicals
P _{flex}	inflection point
PH	Acid base
Ppa	Pressure of pulmonary artery
P_{pl}	pleural pressure
$ m R_{aw}$	Resistance
rt-PA	Recombinant tissue plasminogen activator
RV	The residual volume
RV	right ventricle
SABAs	Short acting b2-agonists
SBT	spontaneous breathing trial
SvO_2	mixed venous oxygen saturation
Т	membrane thickness
TLC	The total lung capacity
TNF	tumor necrosis factor
TV	The tidal volume
UFH	Unfractionated heparin
UIP	upper inflection point
V _A /Q	ventilation perfusion ratio
VC	The vital capacity
Vd _{alv}	alveolar dead space
Vd _{aw}	airway dead space
Vd_{phys}	physiologic dead space

VILI	ventilator-induced lung injury
VS	versus
V_{T}	tidal volume
WOB	work of breathing

List of figures

Respiratory passages	Page 4
A, Surface view of capillaries in an alveolar wall. B, Cross-sectional view of alveolar walls and their vascular supply.	Page 6
Diagram showing respiratory excursions during normal breathing and during maximal inspiration and maximal expiration.	Page 10
Diagram showing the distribution of alveolar ventilation (V_A) , pulmonary blood flow (Q) , and the ventilation: perfusion ratio (V_A/Q) in a normal lung .	Page 16
Ultrastructure of the alveolar respiratory membrane, shown in cross section	Page 18
The three phases of capnography tracings. Phase I contains gas from the apparatus and anatomic dead space (airway), phase II represents increasing carbon dioxide concentration resulting from progressive emptying of alveoli, and phase III represents alveolar gas. The highest point of phase III is the end-tidal partial pressure of carbon dioxide (PetCO ₂).	Page 52
Analysis of airway pressures and flow during volume-controlled mechanical ventilation. The difference between peak or maximal pressure (P _{max}) and plateau pressure (P _{plat}) defines the resistive pressure, whereas the difference between P _{plat} and positive end-expiratory pressure (PEEP) defines the elastic pressure. Analysis of the airway pressure shape during the phase of constant flow inflation (removing initial and final parts) can be used to calculate the stress index (arrow).	Page 58
	A, Surface view of capillaries in an alveolar wall. B, Cross-sectional view of alveolar walls and their vascular supply. Diagram showing respiratory excursions during normal breathing and during maximal inspiration and maximal expiration. Diagram showing the distribution of alveolar ventilation (V _A), pulmonary blood flow (Q), and the ventilation: perfusion ratio (V _A /Q) in a normal lung. Ultrastructure of the alveolar respiratory membrane, shown in cross section The three phases of capnography tracings. Phase I contains gas from the apparatus and anatomic dead space (airway), phase II represents increasing carbon dioxide concentration resulting from progressive emptying of alveoli, and phase III represents alveolar gas. The highest point of phase III is the end-tidal partial pressure of carbon dioxide (PetCO ₂). Analysis of airway pressures and flow during volume-controlled mechanical ventilation. The difference between peak or maximal pressure (P _{plat}) defines the resistive pressure, whereas the difference between P _{plat} and positive end-expiratory pressure (PEEP) defines the elastic pressure. Analysis of the airway pressure shape during the phase of constant flow inflation (removing initial and final parts) can be

Figure (4-3)	Pressure (horizontal axis)-volume (vertical axis) loop obtained in a sedated and paralyzed patient with acute respiratory distress syndrome (ARDS) by the means of a super syringe with successive small steps of inflation and deflation	Page 60
Figure(4-4)	Example of a flow wave shape typical of expiratory flow limitation and intrinsic positive end-expiratory pressure (PEEP)	Page 63
Figure (4-5)	Example of ineffective efforts demonstrated on the esophageal pressure analysis	Page 64
Figure (4-6)	Campbell diagram with all of its components: The horizontal axis shows the esophageal pressure (the surrogate of pleural pressure), and the vertical axis denotes volume above end-expiration. The fitted points to the left of the red line indicate the decrease in esophageal pressure during inspiration, and the points to the right of the red line indicate the esophageal pressure during expiration.	Page 66

List of tables:

Table (2-1)	summarizes the most common causes of airway obstruction
Table (2-3)	Causes of lower airway obstruction
Table (2-3)	The mnemonic "PAINT" has been used to divide the causes of restrictive lung disease into pleural, alveolar, interstitial, neuromuscular, and thoracic cage abnormalities.
Table (2-4)	Disorders affecting signal transmission to the respiratory muscles
Table (3-1)	These characteristics of the sputum may be highly indicative of the underlying disorder
Table (3-2)	Differential diagnosis is complex and includes bronchopulmonary, cardiovascular, hematologic, and other systemic disorders
Table (3-3)	A Modified Borg Scale, such as shown in, also uses a 0 to 10 scoring system with descriptive terms to depict the perceived intensity of a symptom such as dyspnea after a specified task
Table (3-4)	Specify the degree of dyspnea (slight, moderate, severe, or very severe) using descriptive terms as well as a numerical grading system.
Table (3-5)	shows causes of dyspnea
Table (3-6)	shows different causes of chest pain

Introduction

Emergency medical admissions constitute a substantial proportion of the workload of the respiratory and cardiology wards, and of the emergency departments. Mortality among these patients is significant and may be determined by the quality of care provided. According to the risk stratification of the patients, the mortality rate may vary from 1% to 30% (Smith et al., 2009).

Interestingly enough, among the numerous variables associated with ICU mortality, two of the most powerful independent predictors are respiratory rate and oxygen saturation, suggesting that the respiratory system is very often involved either as a primary trigger of the emergency or as a secondary target of another organ's acute dysfunction (Smith et al., 2009).

Most pulmonologists and intensivists, when asked about what they considered to be a respiratory emergency, are likely to suggest the occurrence of acute respiratory failure, either hypoxic or hypercapnia (Alan et al., 2006).

The main causes of acute respiratory problems are considered to be an exacerbation of chronic obstructive pulmonary disease or a restrictive disease, pulmonary infections, acute respiratory distress syndrome and cardiogenic pulmonary oedema (Alan et al., 2006).

However, in our daily practice, we have to face other important, although less frequent, respiratory emergencies, such as haemoptysis, ingestion of foreign bodies, pneumothorax, drowning and inhalation injury (Alan et al., 2006).

On the other hand, respiratory emergencies in patient admitted to ICU can be secondary to other organ dysfunction such as neuromuscular disorders and iatrogenic causes (**Peruzzi et al., 1997**).

Evaluation of patient admitted to ICU with respiratory problem is often a challenge, since the differential diagnosis is a broad. So making correct diagnosis by understanding the significance of the tests of pulmonary function and the pulmonary imaging studies are essential (Nava et al., 2005).

Respiratory emergencies support encompasses a lot of prophylactic, therapeutic and diagnostic interventions. The application of correct modality at appreciate time will often result in good outcome with minimal risks and avoid the use of more invasive or expensive supportive measures (Alan et al., 2006).

Aim of work

The aim of this work is to discuss different causes, clinical pictures, investigations and managements of respiratory emergencies in ICU

ANATOMY AND PHYSIOLOGY OF THE RESPIRATORY SYSTEM

Anatomy of the Respiratory System:

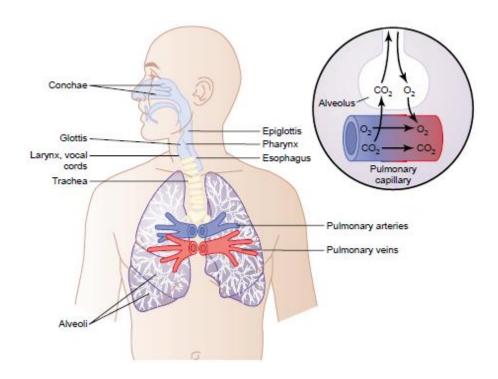
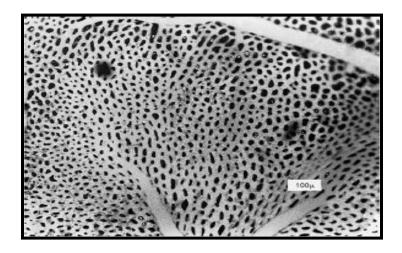


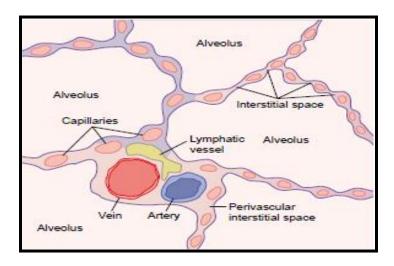
Figure (1-1): Respiratory passages (Guyton and Hall, 2006).

I. Upper airway:

Air travels from the nasal passages to the pharynx, and then into the larynx. The larynx lies at the level of upper cervical vertebrae, C4-6, and its main structural components are the thyroid, cricoid and arytenoid cartilages. The thyroid and cricoid cartilages are linked anteriorly by the cricothyroid membrane, through which access to the airway can be gained in an emergency (**Roberts**, **2000**).


The vocal cords are thin white borders on the lower pair of mucosal folds lining the pharynx; the cords are drawn apart during inspiration and relax toward midline during expiration. During swallowing the epiglottis flaps down to direct swallowed materials into the esophagus, thus guarding the opening of the larynx (**Roberts**, 2000).

II. Lower airway:


Approximately the first 16 divisions of the tracheobronchial tree take no direct part in gas exchange and are thus designated the conducting zone; it's volume is approximately 150ml and is known as the anatomic dead space. The trachea extends from below the cricoid cartilages to the carina. Most of the tracheal circumference is made up of a series of C shaped cartilages; the posterior aspect is made of smooth muscle and lies adjacent to the esophagus. Excessive pressure on this smooth muscle by the cuff of an artificial airway can lead to erosion and tracheoesophageal fistula. When the trachea bifurcates, the right main bronchus is less sharply angled from the trachea than the left, making aspirated material more likely to enter the right lung (Corrin, 2000).

After penetrating the lung, the main stem bronchi divide into lobar bronchi which then bifurcate and trifurcate into segmental bronchioles or terminal bronchioles that supply the lung segments on the left and right. The bronchioles lack cartilages and are made of connective tissue that contains elastic fibers and limited smooth muscles and are held open by radial traction from the elastic recoil forces of the lung tissue. With the lack of supporting cartilage, these airways are susceptible to bronchospasm (**Des Jardins, 2002**).

The terminal respiratory unit, or acinus, is that portion of the lung arising from a single terminal bronchiole. The acinus is the primary gas exchanging unit of the lung, consisting of the respiratory bronchiole, alveolar ducts, alveolar sacs, and the alveoli. Gas exchange occurs efficiently at the alveolar-capillary membrane. The cellular make up of the alveolus makes it an efficient gas exchanger (**Guyton and Hall, 2006**).

[A]

[B]

Figure (1-2): A, Surface view of capillaries in an alveolar wall. B, Cross-sectional view of alveolar walls and their vascular supply (Guyton and Hall, 2006).

Type I alveolar cells are structured to promote gas exchange and prevent fluid transudation into the alveolus. Type II cells produce surfactant, a lipoprotein that reduces the surface tension within the alveolus and so prevents the alveoli and bronchioles from collapsing specially during expiration, which makes it easier to expand the lung (increase compliance) and so reduces the work associated with breathing. Surfactant loss leads to atelectasis, impaired gas exchange and increase work of breathing (**Ochs and Weibel, 2008**).

III. Vascular supply:

The lungs have a double blood supply, the pulmonary circulation for gas exchange with the alveoli and the bronchial circulation to supply the parenchyma of the lung itself (**Pierce**, **2007**).

i. The bronchial circulation

The primary function of the bronchial circulation is to nourish the walls of the conducting airways and surrounding tissues by distributing blood to the supporting structures of the lungs. Under normal conditions, the bronchial circulation does not supply blood to the terminal respiratory units (respiratory bronchioles, alveolar ducts, and alveoli); they receive their blood from the pulmonary circulation (**Pierce, 2007**).

Bronchial arterial pressure is approximately the same as aortic pressure, and bronchial vascular resistance is much higher than resistance in