The Role of Diffusion-Weighted Magnetic Resonance Imaging in the Evaluation of Patient with Orbital Masses

Thesis

Submitted for partial fulfillment of the master degree in Radiodiagnosis

Submitted by

Mo'mena Abdel Aziz Abdou

M.B.B.CH Cairo University

Supervised by

Prof.Dr. Ikram Hamed Mahmoud

Professor of Radiodiagnosis National cancer institute Cairo University

Dr. Mohamed Darwish Homos

Lecturer of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Ayda Aly Youssef

Lecturer of Radiodiagnosis National cancer institute Cairo University

Faculty of Medicine Cairo University 2015

بسو الله الرحمن الرحيو

{قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم}

حدق الله العظيم

سورة البقرة الاية {٣٢}

Abstract

Orbital masses represent a spectrum of benign and malignant lesions in adults and children that can be challenging to diagnose and treat. Magnetic resonance imaging is a powerful tool for imaging the orbit, due to the excellent tissue contrast it provides.

Purpose: To evaluate the ability of Diffusion-Weighted MRI in the characterization of the orbital masses.

Patients and methods: We evaluated 51 patients with 30 malignant and 21 benign orbital masses. MR examinations were performed with a 1.5-T system. Diffusion-weighted single-shot EPI images were obtained in all patients. The apparent diffusion coefficient (ADC) was calculated and correlated with the pathology results.

Results: The mean ADC value of benign was significantly higher than that of malignant orbital masses.

Key words: MRI; Diffusion-weighted images (DWI); orbital masses; Apparent Diffusion Coefficient (ADC).

ACKNOWLEDGEMENT

Firstly and lastly, Thanks are all to **ALLAH Almighty**, whose help I always seek and without his willing I will achieve nothing.

My deep appreciation and gratitude to **Prof. Dr. Ikram Hamed Mahmoud** professor of Radiodiagnosis, National
Cancer Institute, Cairo University, for his remarkable effort,
great experience had added much to my knowledge, his great
support and kind close supervision.

I would like to express my deep thanks and sincere gratitude to **Dr. Mohamed Darweesh Homos** lecturer of Radiodiagnosis, Faculty of Medicine, Cairo University and **Dr. Ayda Aly Youssef** lecturer of Radiodiagnosis, National Cancer Institute, Cairo University for their valuable advice, helpful suggestions and kind supervision.

I wish to express my thanks to them as they gave me a lot of elegant ideas, support during work and much of their precious time during supervising and revising this whole work.

Lastly but not least, I would like to thank my **husband** & my **family** for their support, encouragement, prayers and providing me the suitable environment for concentration and progress.

List Of Contents

LIST OF CONTENTS

	Page no.
List of abbreviations	I
List of tables	IV
List of figures	V
Introduction	
Aim of work	3
Review of literature	
• Anatomy of the orbit	4
• Pathology and MRI features of orbital masses	18
Orbital Imaging Modalities	62
Diffusion-Weighted Imaging:	69
Patients and methods	80
Results	84
Case Presentation.	
Discussion.	118
Summary	125
Conclusion	126
References	
Arabic summary	137

List of Abbreviations

3D: 3 Dimensional.

ADC: Apparent Diffusion Coefficient.

AML: Acute Myeloid Leukemia.

AT/RT: Atypical Teratoid/Rhabdoid Tumors.

CNS: Central Nervous System.

CSF: Cerebro-Spinal Fluid.

CT: Computed Tomography.

DWI: Diffusion Weighted Imaging.

EOM: Extra-Ocular Muscles.

FSE: Fast Spin Echo.

GD: Graves Disease.

GO: Graves' Orbitopathy.

I 125: Iodine 125.

IPT: Inflammatory Pseudotumor.

MALT: Mucosa-Associated Lymphoid Tissue.

MRI: Magnetic Resonance Imaging.

NF1: Neurofibromatosis Type 1.

NF-2: Neurofibromatosis Type 2.

OC: Orbital Cellulitis.

ONG: Optic Nerve Glioma.

OVV: Orbital Venous Varices.

PAG: Perineural Arachnoidal Gliomatosis.

PHPV: Persistent Hyperplastic Primary Vitreous.

PNF: Plexiform neurofibroma.

RB: Retinoblastoma.

RF: Radiofrequency.

ROC: Receiver Operating Characteristic Curve.

ROI: Regions Of Interest.

SAS: Sub Arachnoid Space.

SE: Spin-Echo.

SI: Signal Intensity.

T1WI:T2 Weighted Image.

T2WI:T2 Weighted Image.

TIRM-sequences: Turbo Inversion Recovery Magnitude Sequence.

US: Ultrasound.

V1: Ophthalmic division of the trigeminal nerve.

V2: Maxillary division of the trigeminal nerve.

List of Tables

Table 1	Signal characteristics of normal ocular structures in different imaging sequences.
Table 2	Frequency distribution of tumor pathological diagnosis.
Table 3	Frequency distribution of signal intensity by MRI.
Table 4	Frequency distribution of contrast enhancement detected by MRI.
Table 5	The mean, median and range of the ADC values of all patients.

List of Figures

Figure No.	Content
Figure 1	Diagram of the right orbit shows the 7 bones
Figure 2	T1axial image showing signal of normal bone
Figure 3	Graph illustrating orbit with various components
Figure 4	T1W axial image (a) of the orbit showing bright signal of the intra
	orbital and subcutaneous fat.T1W fat-suppressed axial image (b)
	shows nulling of the signal from the intraorbital and subcutaneous
	fat.
Figure 5	T1W fat-suppressed post contrast axial image of the orbit showing
	normally enhancing & non enhancing structures of the orbit
Figure 6	T2W coronal section through the globe showing anatomy orbit
Figure 7	T2 coronal near orbital apex showing optic nerve sheath
Figure 8	T1 Coronal posterior showing the extraocular muscle.
Figure 9	T1 Axial showing the signal intensities of the lens, vitreous & eye
	coats.
Figure 10	T2W axial section with fat suppression through mid orbit showing
	anatomy of orbit
Figure 11	MRI of Retinoblastoma
Figure 12	MRI of malignant melanoma of the choroid
Figure 13	MRI of persistant hyperplastic primary vitreous
Figure 14	MRI of coats disease
Figure 15	MRI of a 7 month-old girl with capillary (infantile) hemangioma
Figure 16	MRI of Cavernous hemangioma (solitary encapsulated venous-
	lymphatic malformation).

Figure 17	MRI of venous-lymphatic malformation
Figure 18	MRI of orbital venous varix
Figure 19	MRI of orbital varix
Figure 20	MRI of optic nerve glioma
Figure 21	MRI of Perineural arachnoidal gliomatosis
Figure 22	MRI meningioma optic sheath.
Figure 23	MRI of a 19-year-old woman with schwannoma
Figure 24	MRI of Plexiform neurofibroma
Figure 25	MRI of Pleomorphic adenoma
Figure 26	MRI of Adenoid cystic carcinoma basaloid variant in 25 year old
	lady.
Figure 27	MRI of Dacroadenitis
Figure 28	MRI of Right orbital rhabdomyosarcoma
Figure 29	MRI of rhabdomyosarcoma
Figure 30	MRI of active Grave's orbitopathy
Figure 31	MRI of pseudotumor
Figure 32	MRI of myxoma
Figure 33	MRI of epidermoid inclusion cyst
Figure 34	MRI of by left intra orbital Abscess
Figure 35	MRI of Granulocytic sarcoma in a 4-year-old boy.
Figure 36	MRI of Lymphoma (multiple cases).
Figure 37	(A) Breast cancer metastasis in a 56-year-old woman
	(B)&(C) Metastatic scirrhous breast cancer in a 43-year-old
	woman
	(D) Melanoma metastatis

Figure 38	CT and MRI of Polyostotic fibrous dysplasia
Figure 39	Radiograph & CT and MRI of Juvenile ossifying fibroma
Figure 40	CT and MRI of osteosarcoma
Figure 41	CT and MRI of Langerhans cell histiocytosis in a 13-year-old
	boy
Figure 42	MRI of 3-year-old boy with medulloepithelioma
Figure 43	Oblique radiograph of skull of optic nerve glioma
Figure 44	CT of Retinoblastoma
Figure 45	Ultrasound of 6-week-old girl with persistent fetal vasculature
	(persistent hyperplastic primary vitreous).
Figure 46	MRI of Cavernous hemangioma (solitary encapsulated venous-
	lymphatic malformation).
Figure 47	Schematic illustration shows water molecule movement
Figure 48	Pulse sequence diagrams
Figure 49	Graph illustrating the logarithm of relative signal intensity (SI)
	versus b value.
Figure 50	Transverse images in 61-year-old woman with low-grade orbital
	lymphoma
Figure 51	Transverse images in 32-year-old man with surgically proven nonsp
	inflammatory tissue
Figure 52	sex distribution of our patients
Figure 53	Percent distribution of lesion location
Figure 54	frequency distribution of tumor type
Figure 55	Box and whisker plot of orbital masses. Malignant tumors show
	lower ADC values than benign lesions
	J

Figure 56	Mean of ADC value of benign and malignant lesions
Figure 57	Receiver operating characteristic (ROC) curve of the ADC value
	used for differentiating malignant tumors from benign lesions.
Figure 58	Bilateral retinoblastoma. (Case 1)
Figure 59	Non keratinized squamous cell carcinoma. (Case 2)
Figure 60	Recurrent squamous cell carcinoma. (Case 3)
Figure 61	Left orbit rhabdomyosarcoma. (Case 4)
Figure 62	Acute myeloid leukemic infilterate (granulocytic sarcoma). (Case 5)
Figure 63	Bilateral Rahbdomyosarcoma. (Case 6)
Figure 64	Acute myeloid leukemic infiltrate of the lacrimal gland. (Case 7)
Figure 65	Adenoid cystic carcinoma of lacrimal gland. (Case 8)
Figure 66	Optic nerve glioma. (Case 9)
Figure 67	Left choroidoretinal coloboma. (Case 10)
Figure 68	Left orbital teratoma. (Case 11)
Figure 69	Xeroderma pegmintosa. (Case 12)
Figure 70	Plexiform neurofibroma. (Case 13)
Figure 71	Malignant peripheral nerve sheath tumor. (Case 14)

Introduction

Orbital masses represent a spectrum of benign and malignant lesions in adults and children that can be challenging to diagnose and treat. Imaging plays an important role in diagnosis, due to a potentially limited clinical examination and risks associated with biopsy. MR imaging is a powerful tool for imaging the orbit, due to the excellent tissue contrast it provides (**Sephadari et al, 2010**).

Proptosis is one of the most common indications for an ophthalmologist to order imaging. The two imaging techniques for the brain and orbit are computed tomography (CT) and magnetic resonance imaging (MRI). Imaging techniques for visualizing pathology of the brain and orbit continue to evolve and improve. The clinicians now have a wide variety of diagnostic tests from which to choose. Additional non invasive MR characterization of tumors has become available through diffusion-weighted imaging (DWI) (Roshdy et al, 2010).

DW imaging can help characterize indeterminate orbital masses & greatly aid in tissue characterization with high accuracy when used in conjunction with clinical and conventional MR imaging findings, providing an additional non invasive predictor of histologic nature and tool for guiding intervention (**Sephadari et al, 2010**).

Diffusion weighted MRI is based on the assessment of the random water proton movement within tissues and reflects cellular density and tissue architecture, providing imaging techniques that does not require the use of ionizing radiation or MR contrast agents and can easily be implemented into a standard MRI protocol. Changes in water molecular diffusion can be measured in vivo with DWI. This measurement of the self-

Introduction & Him of work

diffusion coefficient of water indicates the mobility of water within tissue and is called the apparent diffusion coefficient (ADC) (Calandriello et al, 2013).

Normal proton diffusion rates have been identified for specific tissue types, including cerebrospinal fluid and white matter and gray matter. The Apparent Diffusion Coefficient (ADC) is generated by measuring identical images at different b-values and represented as ADC map from which ADC value calculated. The ADC value is dependent on the amount of restriction of water diffusion; the more restricted diffusion a tissue has, the lower its ADC value. This value is then graphically reconstructed as the ADC map (Lope et al, 2010).

Because malignant tumors often have restricted diffusion, possibly as the result of their increased cellularity, larger nuclei and decreased extracellular space, they frequently has low ADC value. The opposite is proposed for benign lesions (**Lope et al, 2010**).