

تبكة المعلومات الجامعية

Cierry Territy (30) Cri

ثبكة المعلومات الجامعية

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار في درجة حرارة من 15 - 20 مئوية ورطوبة نسبية من 20- 40- 40.

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

تُسكة المعلومات الحامعية

بعض الوثائق الأملية تالفة

ثبيكة المعلومات الجامعية

بالرسالة صفحات

لم ترد بالأصل

Ain Shams University

Faculty of Science

Physics Department

EXPERIMENTAL VERIFICATION FOR ELECTRON BEAM DOSE ALGORITHMS

by

MOHAMED ABD EL-AZIZ SHERIF

Assistant Lecturer in National Institute for Standards

for

The degree of Doctor of Philosophy in Physics

supervisors

Dr. EL-SAYED MAHMOUD EL-SAYED

Professor of Biophysics, Physics Department Faculty of science, Ain Shams University

&

Dr. HODA MOHAMED EISSA

Professor and Head of Radiation Measurements Department
National Institute for Standards, NIS

A AND A

1999

П •

Ain Shams University Faculty of Science **Physics Department**

EXPERIMENTAL VERIFICATION FOR ELECTRON **BEAM DOSE ALGORITHMS**

by

MOHAMED ABD EL-AZIZ SHERIF

Assistant Lecturer in National Institute for Standards

for

The degree of Doctor of Philosophy in Physics

supervisors

Dr. EL-SAYED MAHMOUD EL-SAYED

Professor of Biophysics, Physics Department
Faculty of science, Ain Shams University

&

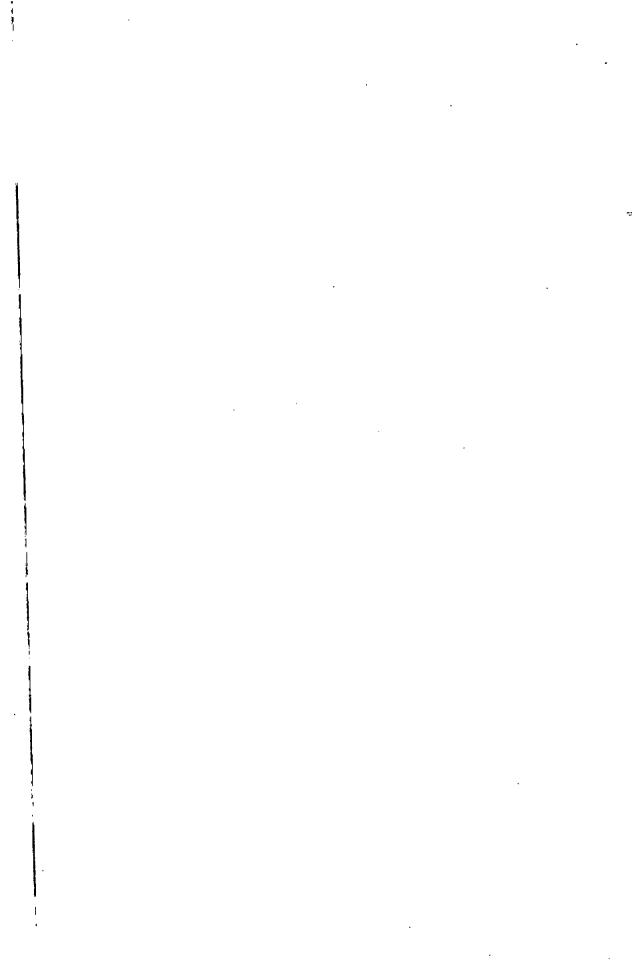
Dr. HODA MOHAMED EISSA

H.M.- Eessen

Dr. HODA MOHAMED EISSA

Professor and Head of Radiation Measurements Department National Institute for Standards, NIS

ACKNOWLEDGMENT


I wish to express my gratitude to Dr. Mohamed A. El Fiki, professor of radiation physics and president of National Institute for Standards, NIS, for his encouragement and helpful guidance during this work.

Many thanks and very appreciation to Dr. El-Sayed Mahmoud El-Sayed, professor of biophysics, Physics Dept., Faculty of Science, Ain Shams Univ., for his kind supervision encouragement and continous guidance during this work.

I wish to express my deepest gratitude to Dr. Hoda M. Eissa professor of radiation physics and head of Radiation Measurements Dept., NIS, for her kind supervision helpful guidance and encouragement during the entire work of this thesis.

I would like to record my great thank and appreciation to the following staff of Radiation Physics Dep., Malmo University Hospital, Lund University, Sweden: Soren Mattsson, Ph. D., Kerstin L- Thapper, Ph. D., Sven A. Johansson, M.Sc, Lena Wittgren, M.Sc, and Lars E. Olsson, Ph.D. for their help during this work in their department, their continous assistance.

I wish to express my thanks also to Dr. Mohamed Mansy and my colleagues in the radiation measurements Dept., NIS, for their continous encouragement, support and advice.

CONTENTS

SUMMARY	Page I
INTRODUCTION	· 1
AIM OF WORK	7
	·
CHAPTER 1 PHYSICS OF ELECTRON BEAM	9
1.1. INTERACTION OF ELECTRONS WITH MATTER	10
1.1.1. Electron Energy Losses	10
1.1.2. Scattering Process	12
1.2. PRODUCTION OF CLINICAL ELECTRON BEAM	16
1.2.1. Electron Acceleration Process	17
1.2.2. Electron Beam Production	18
1.2.3. Electron Beam Monitor	19
1.2.4. Electron Beam Collimation	19
1.3. ELECTRON ENERGY SPECIFICATIONS	19
1.3.1. Most Probable Energy, E _{p,0}	21
1.3.2. Mean Energy, E ₀	22
1.3.3. Energy at Depth, $(E_0)_z$ & $(E_p)_z$	23
1.4. ELECTRON BEAM CHARACTERISTICS	23
1.4.1. Central Axis Depth Dose	24
1.4.2. Dose Profiles	27
1.4.3. Isodose Distribution	29
1.5. ELECTRON SOURCE POSITION	29
1.6. ELECTRON ANGULAR SPREAD	34

CHAF	TER 2	2	
		OF CLINICAL ELECTRON BEAM	36
	2.1.	EXTENDED SOURCE SURFACE DISTANCE	36
	2.2.	FIELD SHAPING	39
	2.3.	ВЕАМ ОИТРИТ	40
	2.4.	BEAM OBLIQUITY	42
	2.5.	TISSUE INHOMOGENEITY	43
	2.6.	BODY IRREGULARITY	45
	2.7.	TREATMENT PLANNING COMPUTER	47
	2.8.	DOSE CALCULATION ALGORITHMS	48
	2.8.1.	Isodose Shift Method	49
	2.8.2.	Equivalent Thickness Methods	50
	2.8.3.	Age Diffusion Theory Models	52
	2.8.4.	Scattering Function Models	53
	2.8.5.	Multiple Scattering Theory Models	55
	2.8.6.	Hogstrom Algorithm	58
CHAF	TER 3	3	
		S AND METHODS	60
	3.1.	INSTRUMENTATION	60
	3.1.1.	Electron Linear Accelerator	60
	3.1.2.	Field Shape Inserts	63
	3.1.3.	Automatic Dosimetry System	64
	3.1.4.	Manual Dosimetry System	68
	3.1.5.	Treatment Planning System	71

3.2	DATA COLLECTION AND ACQUISITION	74
3.2	1. Considerations to Collect Data	74
3.2.	2. RFA Dosimetry System	76
3.2	3. Film Dosimetry	79
3.2	4. Data Acquisition	82
3.3.	EXPERIMENTAL VERIFICATION TECHNIQUE	84
3.3.	Quadratic Fundamental Fields -	87
3.3.	Extended Source Surface Distance	88
3.3.	3. Electron Field Shape Inserts	89
3.3.	4. Oblique Beam Incidence	93
3.3.	5. Irregular Body Surfaces	. 94
3.3.	6. Internal Inhomogeneous Tissues	97
CHAPTER	₹ 4	
DATA RE	QUIRED FOR PENCIL BEAM ALGORITHM	104
4.1.	MEASUREMENTS	104
4.1.	 Central Axis Depth Dose, %DD 	105
4.1.	 Most Probable Energy E_{p,0} 	106
4.1.	Absolute Output Measurements	107
4.1.	4. Effective Source Position	108
4.1.	5. Electron Angular Spread	109
4.2.	ACQUISITION & IMPLEMENTATION OF DATA	110
4.2.	Depth Dose Distribution (% DD)	110
4.2.	2. Most Probable Energy E _{p,0}	111
4.2.	Absolute Output Measurements	113
4.2.	Effective Source Position	115
4.2.	5. Electron Angular Spread	120
CHAPTER	R 5	
RESULTS	& DISCUSSION	121
5.1.	QUADRATIC FUNDAMENTAL FIELDS	124
5.2.	EXTENDED SOURCE SURFACE DISTANCE	138
5.3.	ELECTRON FIELD SHAPED INSERTS	147

5.4.	OBLIQUE BEAM INCIDENCE	173
5.5.	IRREGULAR BODY SURFACES	181
5.5.1.	90 ⁰ Step Phantom (e.g. bolus)	181
5.5.2.	Nose Simulation Phantom	183
5.6 .	INTERNAL INHOMOGENEOUS TISSUES	190
5.6.1.	Large Inhomogeneous Slabs	190
5.6.2.	Chest Wall Lung Interface	194
5.6.3.	Lung Mediastinum Interface	195
5.6.4.	L- shape Bone	197
5.6.5.	Small Inhomogeneous Volumes	200
CONCLUSION		212
REFERENC	EES	215
ARABIC SU	MMARY	