

The Effect of Administration of Fosfomycin in the Treatment of Ventilator Associated Pneumonia in Respiratory Intensive Care Unit and Poison Control Centre in Ain Shams University Hospitals

Thesis

Submitted for the Partial Fulfilment of the Master Degree
in Pulmonary Medicine

Presented by

Shaimaa Saeed Mohamed

(M.B, B.Ch)
Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Aya M. M. Abdel Dayem

Professor of Pulmonary Medicine Faculty of Medicine, Ain Shams University

Prof. Dr. Mahmoud Lotfy Sakr

Professor of Clinical Toxicology Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Ibrahim Aly Dwedar

Assistant Professor of Pulmonary Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2016

- I would like to express my deepest gratitude and sincere appreciation to **Prof. Dr. Aya M. M. Abdel Dayem,**Professor of Pulmonary Medicine, Faculty of Medicine,
 Ain Shams University for her encouragement, her kind support and appreciated suggestions that guided me to accomplish this work.
- Sakr, Professor of Clinical Toxicology, Faculty of Medicine, Ain Shams University, who freely gave his time, effort and experience along with continuous guidance throughout this work.
- Many thanks for **Assist. Prof. Dr. Ibrahim Aly Dwedar,** Assistant Professor of Pulmonary Medicine,
 Faculty of Medicine, Ain Shams University, for his sincere support.
- Many thanks to **My Family** for unconditional love & support.

Tist of Contents

Title	Page No.		
List of Tables	i		
List of Figures	ii		
List of Abbreviations			
Abstract			
Introduction	1		
Aim of the Work	4		
Review of Literature			
Ventilator Associated Pneumonia	5		
Fosfomycin	32		
Patients and Methods			
Results			
Discussion 57			
Summary			
Conclusion			
Recommendations			
References			
Arabic Summary			

List of Tables

Table No.	Title	Page No.
Table (1):	The clinical pulmonary infection scor	re17
Table (2):	Suggested Empiric Treatment Opti Clinically Suspected VAP	
Table (3):	Demographic distribution of the patients.	
Table (4):	Comparison between cases and or regarding the onset of VAP	
Table (5):	Comparison between group A and gregarding improvement and mortality	
Table (6):	Comparison between endotracheal a culture results in early onset and lat VAP.	te onset
Table (7):	Comparison between results endotracheal aspirate culture in g and group B.	roup A
Table (8):	Comparison between group A and gregarding CRP and CPIS score on daday 5	ay 1and
Table (9):	Compares liver and kidney function Group B on day 1 and day 5	
Table (10):	Compares liver and kidney function Group A on day 1 and day 5	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	CDC algorithm for diagnosis of VAF	E 7
Figure (2):	Scanning electron microscopy of an endotracheal tube after extubation.	
Figure (3):	The lateral Trendelenburg position in the Gravity Ventilator-A Pneumonia trial resembles the lateral position.	Associated eral safety
Figure (4):	Structural formula of fosfomycin	32
Figure (5):	A coulmn chart that represents the CRP in group B	
Figure (6):	A column chart that represents the CRP and CPIS score among both gr	

Tist of Abbreviations

Abb. Full term

ALT:	Alanine aminotransferase	
ARDS:	Acute respiratory distress syndrome	
AST:	Aspartate aminotransferase	
ATS:	American Thoracic Society	
BAL:	Bronchoalveolar lavage	
CDC:	Center of Disease Control	
CFU:	Colony-Forming Units	
CNS:	Coagulase negative staphylococcus	
CPIS:	Clinical Pulmonary Infection Score	
CRP:	C-reactive protien	
CSSS:	Continuous suctioning of subglottic secretions	
ESBL:	Extended-spectrum beta-lactamase producing	
ESEL.	bacteria beta factamase producing	
ETA:	Endotracheal tube aspirates	
ETT:	Endotracheal tube	
FIO ₂ :	Fraction of inspired oxygen	
ICU:	Intensive care unit	
IDSA:	Infectious Diseases Society of America	
IHI:	Institute of Healthcare Improvement	
IL:	Interleukin	
IVAC:	Infection-related Ventilator-Associated	
	Complication	
LT:	Leukotriene	
MDR:	Multidrug resistant	
MRSA:	Methicillin- resistant Staphylococcus aureus	
MSSA:	Methicillin- sensitive Staphylococcus aureus	
NIPPV:	Non-invasive positive pressure ventilation	
Pao ₂ :	Arterial oxygen tension	
PCo ₂ :	Carbondioxide tension	
PEEP:	Positive End Expiratory Pressure	
PSB:	Protected specimen brush	

PVAP:	Possible Ventilator associated pneumonia
PVC:	Polyvinyl chloride
ROI:	Reactive oxygen intermediate
Sao2:	Arterial oxyhemoglobin saturation
SDD:	Selective digestive decontamination
TNF:	Tumor necrotizing factor
UTIs:	Urinary tract infection
VAC:	Ventilator-Associated Condition
VAE:	Ventilator-associated event
VAP:	Ventilator associated pneumonia

Abstract

In view of the above, the present study was undertaken to assess the effect of oral administration of Fosfomycin in the treatment of ventilator associated pneumonia.

The study included 25 males & 15 females ranging in age from 18 to 81 years with a mean age of 51.85 ± 17.07 years who were diagnosed with VAP. They were classified into two groups where oral fosfomycin was used as adjunctive treatment in comparison to empirical antibiotics alone.

Key words: Selective digestive decontamination - Tumor necrotizing factor - Urinary tract infection - Infectious Diseases Society of America

Introduction

Ventilator-associated pneumonia (VAP) is defined as pneumonia that occurs 48-72 hours following endotracheal intubation, and is characterized by the presence of new progressive infiltrates, signs of systemic infection (fever, altered white blood cell count, changes in sputum characteristics), and detection of a causative agent (American Thoracic society, 2005).

VAP can be classified as early onset or late onset according to whether the infection began within the first 4 days of hospitalization or later (more than or equal 5 days). Approximately, one-half of all cases of VAP occur within the first 4 days of mechanical ventilation (American Thoracic Society, 2005).

VAP is estimated to occur in 9-27% of all mechanically ventilated patients. The crude mortality rate associated with VAP ranges from 24% to 50% among patients in the intensive care unit (ICU) and can reach 76% in some specific settings or when the infection is caused by some pathogens (*Chastre et al., 2002*).

VAP is associated with increased hospital costs due to longer ICU stay, duration of mechanical ventilation and due to the costs associated with using the diagnostic methods and the antibiotic regimen to treat a patient with VAP (Safdar et al., 2005). Increasing rates of drug

resistance among these pathogens, coupled with an increased likelihood of the administration of inappropriate antimicrobial therapy in the hospital setting, have become a serious health care problem that affects not only patient outcomes but also the use of health care resources (*Kollef*, 2004).

Currently, antimicrobial resistance rates are increasing among Acinetobacter species, extended-spectrum b-lactamase producing Enterobacteriaceae (ESBL) and pseudomonas aeruginosa, all of which are gram-negative pathogens associated with nosocomial infections in the ICU (Gaynes et al., 2005).

The shortage of new antimicrobial agents has made the scientific community reconsider the potential value of old antibiotics. Fosfomycin, a phosphonic acid derivative was initially described and isolated in 1969. Today, Fosfomycin tromethaine, a soluble salt with improved bioavilability over Fosfomycin, is being synthetically approved for the treatment prepared and is uncomplicated in urinary tract infections (UTIs). It has activity against a range of Gram-positive and Gramnegative bacteria including some strains of Pseudomonas aeruginosa (Hutzler et al., 1977). It has synergistic antimicrobial effects with aminoglycosides and betalactams (Afshari et al., 2012).

Fosfomycin also exerts immunomodulatory effects, mainly on lymphocyte and neutrophil function (*Roussos et al.*, 2009).

Fosfomycin is available in two oral formulations – Fosfomycin tromethamine and Fosfomycin calcium approved for the treatment of urinary tract infections. There is also an intravenous formulation – Fosfomycin disodium that has been used successfully to treat adult patients with serious infections (*Mirakhur et al.*, 2003). Nebulized fosfomycin sodium was also used effectively in the treatment for chronic sinusitis (*Astushi et al.*, 2001).

Aim of the Work

This study was conducted to assess the effect of oral administration of fosfomycin in the treatment of ventilator associated pneumonia, in combination with empirical therapy, in Respiratory Intensive Care Unit and poison Center in Ain Shams University Hospitals.

Ventilator Associated Pneumonia

Definition

Ventilator-associated pneumonia (VAP) is defined as a pneumonia that occurs in patients mechanically ventilated for at least 48 hours and characterized by the presence of new or progressive infiltrates, signs of systemic infection (temperature, blood cell count), changes in sputum characteristics, and detection a causative agent (American Thoracic Society, 2005). Pneumonia that occurs within 4 days of intubation is defined as early onset VAP and its usually caused by antibiotic sensitive pathogens whereas late onset VAP emerges after 4 days of intubation and is more likely to be caused by multidrug resistant (MDR) bacteria (Hunter, 2012).

The precise definition of VAP is still a matter of debate, due to the lack of criteria to distinguish it from other pulmonary conditions that are very likely to occur in critically ill patients. Each of the VAP findings is non-specific and could be consistent with other diseases (Cristina et al., 2013).

In addition, the current definitions are subjective and have low specificity as most of the involved criteria are linked to the observer's opinion (secretions characteristics and amount, clinical examination) and most radiographic findings are prone to inter-observer variability and unreliability (*Wunderink*, 1992).

The Centers of Disease Control (CDC) recently proposed a surveillance definition based upon objective and recordable data in an effort to limit definition inaccuracy and improve reproducibility of the diagnosis. The CDC proposed the term ventilator-associated event (VAE) an algorithm that includes:

- 1. Ventilator Associated Condition (VAC);
- 2. Infection-related Ventilator-Associated Complication (IVAC); and
- 3. Possible VAP (PVAP). IVAC is divided into possible and probable, based upon different implications of qualitative and quantitative microbiological culture (CDC, 2013).

Precise time limits are set to detect only new events directly as a consequence of mechanical ventilation. A 48-hour time lapse of stability or improvement of the respiratory function has been fixed to differentiate any new condition from the evolution of the underlying disease.

The new algorithm (Figure 1) is a proposal to detect all the ventilator-associated complications, not only VAP, and the omission of radiological findings (CDC, 2013).

Ventilator-Associated Condition After ≥ 2 days of stable/decreasing PEEP and F_{IO_2} Minimum daily F_{IO_2} increase of ≥ 0.20 for ≥ 2 days Minimum daily PEEP increase of ≥ 3 cm H_2O for ≥ 2 days

Infection-Related VentilatorAssociated Condition
Temperature ≥ 38°C or ≤ 36°C
Leukopenia (≤ 4,000 WBC/mL) or
leukocytosis (≥ 12,000 WBC/mL)
New antimicrobial continued ≥ 4 days

Ventilator-Associated Pneumonia

Purulent secretions: ≥ 25 neutorophils and ≤ 10 squamous epithelial cells per low-power field Positive culture of:

Secretions obtained via endotracheal suctioning: ≥ 10⁵ CFU/mL or equivalent semi-quantitative result

Bronchoalveolar lavage fluid: ≥ 10⁴ CFU/mL or equivalent semi-quantitative result

Lung tissue: ≥ 10⁴ CFU/mL or equivalent semi-quantitative result

Protected specimen brush: ≥ 10³ CFU/mL or equivalent semi-quantitative result

Pleural effusion

Lung tissue on histology

Specific diagnostic test for Legionella species, influenza virus, respiratory syncytial virus, adenovirus, or parainfluenza virus

Figure (1): CDC algorithm for diagnosis of VAE (CDC, 2013).