

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer and Systems Engineering Department

Wireless Communication Protocols for Smart Home Applications

Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Electrical Engineering

Submitted by:

ENG. AZZA KAMAL NABIH HANAFI

B.Sc. of Electrical Engineering (Computer and Systems Engineering) Ain Shams University, 2004

Supervised by:

PROF. DR. GAMAL M. ALY
PROF. DR. MOSTAFA M. GOMAA
DR. HOSSAM S. OSMAN

Cairo, 2012

APPROVAL SHEET

Name Azza Kamal Nabih Hanafi

Thesis Wireless Communication Protocols for Smart Home Applications
Degree Master of Electrical Engineering (Computer & Systems Engineering)

Examiners Committee

Name, Title, and Affiliation

Signature

Prof. Dr. Mohamed Gamal El-Din Darwish Professor, Cairo University

Prof. Dr. Ayman Mohamed Hassan Wahba Professor, Ain Shams University

Prof. Dr. Gamal Aly Professor, Ain Shams University

Dr. Hossam Osman Associate Professor, Ain Shams University

Date: 27/08/2012

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at the Software Engineering Competence Center (SECC), Information Technology Industry Development Agency (ITIDA), Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Date: 27th August, 2012

Name: Azza Kamal Nabih Hanafi

C.V

Name of Researcher	Azza Kamal Nabih Hanafi
Date of Birth	18 th December, 1982
Place of Birth	Egypt
University Degree	B.Sc. of Electrical Engineering (Computer and Systems Engineering)
Name of University	Ain Shams University, Faculty of Engineering
Date of Degree	July, 2004
Current Position	Senior R&D Engineer - Software Engineering Competence Center

ABSTRACT

Smart home technologies are gaining more and more attention as their emerging applications day-after-day demonstrate high value when it comes to yielding resource-thriftiness, and providing comfort, convenience, security, and entertainment to individuals in general and to elderly and sick people in particular. This thesis tackles two major challenges facing such applications.

First, as smart home applications are getting more and more complex, it is required to find an effective tool to model such complexity in order to make smart home realization simpler and systematic. The thesis proposes utilizing the famous Petri net tools to model, simulate, analyze, control, and supervise the activities found in a smart home. They offer many advantages over state-based models; the initial efforts towards formality. They overcome the state explosion problems of representing complex smart home scenarios. Modularity is another key improvement when compared to state-based models where any design flaws or mistakes could invalidate the entire model and any system specification changes could require tremendous effort to modify the design. In addition, it can explicitly model concurrency of the various systems existing in the home.

Second, as the indoor-positioning application plays a vital role in automating homes and providing energy thriftiness, the thesis develops a new fuzzy-based indoor positioning technique. The new technique uses the low-cost ZigBee wireless communication protocol and its link quality indicator (LQI) metric to accurately determine room-level positions. It considers environment characteristics when specifying different fuzzy sets, with K-means algorithm is utilized in order to specify the different fuzzy ranges based on the LQI histogram in the specific environment. The new fuzzy-based technique is compared to two other popular techniques, namely, the highest LQI technique and the environment adaptive technique. When the three techniques are implemented using Jennic JN5148 ZigBee PRO evaluation kit, the

developed technique demonstrates superior performance under the typical memory and time constraints.

Keywords: Smart home, Home automation, Petri net, Wireless communication, ZigBee, LQI, Fuzzy logic, Indoor positioning

ACKNOWLEDGMENTS

First, I want to express my gratitude to Allah whose blessings made my efforts fruitful. Secondly, throughout the years many people have directly and indirectly helped me achieve this goal. I would like to thank them all, but there are some people who need special recognition.

First of all, I would like to thank my supervisors **Prof. Dr. Gamal M. Aly**, **Prof. Dr. Mostafa M. Gomaa**, and **Dr. Hossam Osman** for their guidance and help. I am grateful to Prof. Dr. Gamal M. Aly for his continuous support, encouragement and patience. I would like to express my gratitude to Prof. Dr. Mostafa Gomaa and Dr. Hossam Osman for being an outstanding advisors and excellent professors. Their constant encouragement, support, and invaluable suggestions made this work successful. They have been everything that one could want in an advisor.

Second, I would like also to take this opportunity to express my deep thanks and appreciation to my father, God bless him, who have helped me in the various stages of my life and was always dreaming of seeing me at the summit of everything.

In addition, a big thank you goes to my family and to many friends who supported me at various stages of this work.

Finally, I would like to thank my thesis examination committee for giving me the honor of being my examiners.

TABLE OF CONTENTS

LIS	T OF ABBREVIATIONSXII
LIS	T OF FIGURESXIV
LIS	T OF TABLESXVI
CH	APTER 1 - INTRODUCTION1
1.1	Overview
1.2	Research Objectives
1.3	Research Contributions
1.3.1	Modeling, Simulation, and Control of Smart Homes Using Petri Nets3
1.3.2	2 ZigBee-Based Location and Context Awareness Smart Home Application4
1.4	Thesis Organization5
CH	APTER 2 - RELEVANT BACKGROUND6
2.1	Smart Home Technology Overview6
2.2	Smart Home Design
2.2.	1 Petri-net Basics
2.2.	2 Petri-net Supervisory Controller Design11
2.2.	3 Petri-net Reachability Graph13
2.3	Smart Home Networking
2.3.	1 Power Line Control
2.3.	2Wireless Control
2.3	3 Wireless communication protocols evaluation and comparison
2.3.	4ZigBee Protocol Stack

2.4	ZigBee-Based Location and Context Awareness	. 32
2.4.	1 Positioning Techniques	. 33
2.4.	1.1 Received Signal Strength-Based Locationing Algorithms	. 34
2.4.	1.2 Angle-of-Arrival-Based Algorithms (AOA)	. 45
2.4.	1.3 Time-Based Algorithms (ToA and TDoA)	. 46
2.4.	2Error Sources in Positioning	. 47
2.4.	3 Error Mitigation Techniques	. 48
2.4.	4Metrics of Location Accuracy	. 49
2.5	Conclusion	. 50
	APTER 3 - MODELING, SIMULATION, AND CONTROL OF SMART HOMES NG PETRI NETS	
3.1	Demonstration Smart Home Complex Scenario	. 53
3.2	Smart Home Modeling Based on Petri Nets	. 56
3.2.	List of Shared Events (Pre-set User Modes)	. 57
3.2.	2 Petri Net Model of the Complex Smart Home Specification	. 57
3.2.	3 Petri Net Simulation Algorithm	. 80
3.2.	4 Petri Net Supervisory Controller Design	. 82
3.2.	5 Experimental Results	. 85
3.3	Conclusion	. 89
	APTER 4 - ZIGBEE-BASED LOCATION AND CONTEXT AWARENESS SMA ME APPLICATION	
4.1	System Specification	. 92
4.2	System Architecture	. 93
4.3	ZigBee Settings	. 95
4.4	LQI Based Indoor Positioning	. 97
4.4.	Indoor Positioning Method-Independent Improvement Mechanisms	. 99

4.4.2 Implementation of Indoor Positioning System	102
4.4.2.1 Location Estimation Using Highest Reported LQI	103
4.4.2.2 Location Estimation Using Environment Adaptive Algorithm	104
4.4.2.3 Improved LQI Location Technique Based on Fuzzy Logic	107
4.5 Experimental Results	112
4.6 Conclusion	116
CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH	118
5.1 Conclusions	119
5.1.1 Modeling, Simulation, And Control of Smart Homes Using Petri Nets	119
5.1.2 ZigBee-Based Location And Context Awareness Smart Home Application	120
5.2 Recommendations for Future Research	121
REFERENCES	122

LIST OF ABBREVIATIONS

AES	Advanced Encryption Standard
AF	Application Framework
AoA	Angle of Arrival
AP	Access Point
APDU	APS Protocol Data Unit
APL	Application Layer
APS	Application Support Sub-layer
BPSK	Binary Phase Shift Keying
BSS	Basic Service Set
BT	BlueTooth
ССК	Complementary Code Keying
CCM	Cipher block Chaining Message authentication protocol
COFDM	Coded Orthogonal Frequency Division Multiplexing
CRC	Cyclic Redundancy Check
CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance
DE-SAP	Data Entity Service Access Point
DS	Distribution System
DSSS	Direct Sequence Spread Spectrum
DU	Data Unit
EDR	Enhanced Data Rate
ESS	Extended Service Set
FFD	Full Function Device
FHSS	Frequency Hopping Spread Spectrum
FSK	Frequency Shift Keying
GFSK	Gaussian shaped Frequency Shift Keying
GTS	Guaranteed Time Slot
HVAC	Heat, Ventilation, and Air Conditioning
IBSS	Independent Basic Service Set
IEEE	Institute of Electrical and Electronic Engineering
ISM	Industrial, Scientific, and Medical
KNN	K Nearest Neighbor
LAN	Local Area Networks
LOS	Line Of Sight
LQI	Link Quality Indicator
MAC	Media Access Control layer
MAC	Message Authentication Code

ME-SAP Management Entity Service Access Point MIC Message Integrity Code MIMO Multiple Input Multiple Output multiplexing MPDU MAC Protocol Data Unit M-QAM M-ary Quadrature Amplitude Modulation NLOS Non Line Of Sight	
MIMO Multiple Input Multiple Output multiplexing MPDU MAC Protocol Data Unit M-QAM M-ary Quadrature Amplitude Modulation	
MPDU MAC Protocol Data Unit M-QAM M-ary Quadrature Amplitude Modulation	
M-QAM M-ary Quadrature Amplitude Modulation	
NLOS Non Line Of Sight	
Title of bight	
NPDU Network Protocol Data Unit	
NWK Network layer	
OEM Original Equipment Manufacturer	
OFDM Orthogonal Frequency Division Multiplexing	
OQPSK Offset Quadrature Phase Shift Keying	
OSI Open System Interconnect	
PAN Personal Area Networks	
PHY PHYsical layer	
PLC Power Line Control	
PN Petri Net	
PPDU PHY Protocol Data Unit	
QPSK Quadrature Phase Shift Keying	
RF Radio Frequency	
RFD Reduced Function Device	
RSS Received Signal Strength	
RSSI Received Signal Strength Indicator	
SAP Service Access Point	
SBPI Supervision Based on Place Invariants	
TdoA Time Difference of Arrival	
ToA Time of Arrival	
UWB Ultra WideBand	
UWM Ultra Wideband Multiplexing	
WAN Wide Area Networks	
Wi-Fi Wireless Fidelity	
WKNN Weighted K Nearest Neighbor	
WLAN Wireless Local Area Networks	
WPAN Wireless Personal Area Networks	
ZB ZigBee	
ZDO ZigBee Device Object	

LIST OF FIGURES

Figure 2-1: A Petri net example	10
Figure 2-2: IEEE 802 family wireless standards	16
Figure 2-3: Bluetooth Piconet	17
Figure 2-4: Bluetooth Scatternet	17
Figure 2-5: ZigBee start topology	19
Figure 2-6: ZigBee mesh topology	19
Figure 2-7: ZigBee tree topology	20
Figure 2-8: IBSS and ESS configurations of Wi-Fi networks	22
Figure 2-9: ZigBee, Bluetooth, and Wi-Fi spectrum	27
Figure 2-10: Architecture of ZigBee stack	29
Figure 2-11: Data transfer between two devices	30
Figure 2-12: Encryption Using Symmetric Keys	31
Figure 2-13: Application of the Message Integrity Code (MIC) in Data Authentication	32
Figure 2-14: Location estimation using trilateration	35
Figure 2-15: The adaptive algorithm calibration phase	42
Figure 2-16: The adaptive algorithm localization phase	42
Figure 3-1: Ground floor of the proposed smart home	53
Figure 3-2: First floor of the proposed smart home	54
Figure 3-3: Petri net model/controller of the swimming pool a	59
Figure 3-4: Petri net model/controller of a fire sub-module	62
Figure 3-5: Petri net model/controller of a lighting sub-module	64
Figure 3-6: Petri net model/controller of a climate control sub-module	66
Figure 3-7: Petri net model/controller of a curtain control sub-module	68
Figure 3-8: Petri net model/controller of the irrigation system	70
Figure 3-9: Petri net model/controller of the intercom system	71
Figure 3-10: Petri net model/controller of an appliance control sub-module	72
Figure 3-11: Petri net model/controller of the gas detection system	74
Figure 3-12: Petri net model/controller of a multimedia sub-module	76
Figure 3-13: Petri net model/controller of the remote access system	77
Figure 3-14: Petri net model/controller of the security system	79
Figure 3-15: Unified Petri net controller-supervisor model of the swimming pool a	85
Figure 3-16: Fire sub-module simulation results	87
Figure 3-17: Swimming pool sub-module simulation results	88
Figure 3-18: Part of the whole reachability graph obtained from swimming pool sub-module	
simulation	89
Figure 4-1: Jennic JN5148-EK010 ZigBee PRO evaluation kit	94
Figure 4-2: Internal structure of JN5148 wireless microcontroller	94
Figure 4-3: ZigBee-based location and context awareness smart home system architecture	
Figure 4-4: ZigBee, Bluetooth, and Wi-Fi spectrum	
Figure 4-5: LQI measurements for one day period	98
Figure 4-6: Relation between LQI and distance	99
Figure 4-7: Experimental testbed	101

Figure 4-8: Rooms adjacency relationships	101
Figure 4-9: System architecture	102
Figure 4-10: Location estimation based on highest reported LQI	103
Figure 4-11: The adaptive algorithm calibration phase	105
Figure 4-12: The adaptive algorithm localization phase	105
Figure 4-13: Partitioning of the test environment into blocks	108
Figure 4-14: Relationship between the number of cluster and the average distortion	109
Figure 4-15: Fuzzy ranges in case of five Fuzzy levels	110
Figure 4-16: Fuzzy ranges in case of seven Fuzzy levels	110
Figure 4-17: Location estimation based on Fuzzy logic	111
Figure 4-18: Test path	113