

Molecular design and synthesis of histone deacetylase inhibitors as antineoplastic agents

Thesis Presented by

Mona Mohamed Abdelatty Mohamed

Bsc. in Pharmaceutical Sciences
Ain Shams University
2007

Submitted for the partial fulfillment of the *Master Degree*In Pharmaceutical Chemistry

Under the supervision of

Dr./ Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Vice Dean for the Educational & Student Affairs
Ain Shams University

Dr./ Shaimaa Emam Kassab

Dr./ Rabah Ahmed Taha Serya

lecturer of Pharmaceutical Chemistry
Damanhur University

lecturer of Pharmaceutical Chemistry
Ainshams University

Ainshams University 2014

Acknowledgements

First and foremost, I would like to express my gratitude to Allah for providing me the blessings to proceed successfully.

I am profoundly indebted and I owe my deepest appreciation and truthful gratitude to **Professor Dr. Khaled Abouzid Mohamed Abouzid,** Professor of Pharmaceutical Chemistry and Vice Dean for Educational and Student Affairs, for his scientific supervision, innovative ideas, fruitful opinion, precious guidance, continuous encouragement, untiring help and high professionalism. His invaluable help of constructive comments and suggestions throughout the whole work have led to the success of this research. I also would like to thank him deeply for his creativity and innovative ideas in choosing this interesting point for my research.

I also would like to thank **Dr. Shaimaa Emam Kassab**, Lecturer of Pharmaceutical Chemistry for her tremendous support, motivation and experience throughout the time she spent at Misr International University (MIU).

It's my great pleasure to thank **Dr. Rabah Ahmed Taha Serya**, Lecturer of Pharmaceutical Chemistry for her precious guidance, continuous support and kindness specially throughout writing the thesis which made the thesis to appear in its final form.

It's a great honor for me to express my sincere appreciation and gratitude to Assistant Professor Nahla Ahmed Hassan Farag, Assistant Professor of Pharmaceutical Chemistry, for her friendly cooperation, kindness, continuous encouragement, endless motivation and enthusiasm. I truly thank her and I am heartily grateful for her endless support and great effort throughout the whole

work specially the experimental part, which contributed to the success of this research.

It is my great pleasure to thank all members of Pharmaceutical chemistry Department, Faculty of Pharmacy, Ain Shams University and all my colleagues in Misr International University who supported me and helped me in my way.

I am grateful to The National Cancer Institute, Maryland, USA for performing anticancer activity and also would like to thank BPS Bioscience for performing HDAC inhibition assay. I would like to thank **Dr. Ahmed essmat**, Pharmacology &Toxicology Department, for performing the in vitro cytotoxicity assays against Liver HepG2 Cancer cell line.

Finally, I can't forget to express my greatest appreciation and gratitude to my parents, fiancée, sister and brother for their encouragement, full support, understanding, endless patience and their continuous prayers to finish this work all throughout the whole long way and their unconditional love and aid.

Contents

Acknowledgements	i
Contents	iii
List of figures	vi
List of tables	ix
List of abbreviations	xi
Abstract	xiv
1. Introduction	1
1.1. Carcinogenesis	1
1.2. Causes of cancer (Aetiology)	1
1.3. Mechanism of cancer formation	1
1.4. Treatment of cancer	2
1.4.1. Traditional cancer treatments	2
1.4.2. Targeted cancer therapy	6
1.5. Histone deacetylases	10
1.5.1. Overview	10
1.6. Histone acetylation and deacetylation involvement in cancer	14
1.6.1. Classification of Histone deacetylase enzymes	15
1.6.2. HDAC substrates	21
1.6.3. Structure of HDACs	23
1.6.4. Mechanism of HDACs	26
1.7. Development of HDACIs	27

1.7.1. Mechanism of HDACIs	27
1.7.2. Clinical application of HDAC inhibitors	30
1.7.3. Design of Histone deacetylase inhibitors	31
1.7.4. Classification of HDACIs applied for cancer therapies:	33
2. Rational and Design	47
2.1. Molecular modeling	50
2.2. Synthetic schemes adapted to prepare the target compounds	53
3. Results and discussion	56
3.1. Chemistry	56
3.2. Biological evaluation	85
3.2.1. <i>In vitro</i> anticancer activity	85
3.2.2. <i>In vitro</i> HDAC enzyme inhibition assay	96
3.3. Molecular modeling studies	98
3.3.1. Docking study	98
3.3.2. Pharmacophore modeling	112
3.3.3. QSAR study	129
4. Experimental	135
4.1. Chemistry	135
4.1.1. Materials and instrumentation	135
4.1.2. Synthesis	136
4.2. Biological evaluation	156
4.2.1. Cell growth inhibitory activity in cancer cells	156
4.2.2. Histone deacetylase inhibitory activity	159

\sim				
\mathbf{C}	$\cap \mathbf{r}$	1te	'n	tc

5. Final conclusion	162
6. Future perspectives	165
7. References	167

List of figures

Figure 1. Monoclonal antibody conjugated with radio-immunotherapy	7
Figure 2. Structure of chromatin	10
Figure 3. Structure of octameric histone.	11
Figure 4. Histone acetylation and deacetylation process	14
Figure 5. Classification of HDACs showing structure, length, cellular localizat	ion
and tissue expression.	16
Figure 6. Saha crystallized in HDLP active site protein data bank ID (1C3S)	24
Figure 7. Illustrates geometrical arrangements of SAHA (HDACI) bound to	
HDLP, HDAC8 and HDAH, producing the same geometric relations	26
Figure 8. Mechanism of histone deacetylation (HDLP) proposed by Finnin	27
Figure 9. Common pharmacophore of HDACIs proposed by Finnin	32
Figure 10. Common framework for bidentate chelating group	33
Figure 11. The three essential pharmacophore features given colour codes	47
Figure 12. Design strategy and structure of target compounds	50
Figure 13. Mechanism of SNAr for synthesis of Ia-g	58
Figure 14. a) Claisen Schmidt first mechanism	61
b) Claisen Schmidt second mechanism	54
Figure 15. Knoevenagel condensation mechanism for synthesis of (IIb-f)	64
Figure 16. Claisen– Schmidt condensation of benzaldehydes	70
Figure 17. Reformatsky condensation reaction of benzaldehydes	70

Figure 18. Wittig-Emons reaction70
Figure 19. Perkin condensation reaction mechanism72
Figure 20. The Doebner knoevenagel modification mechanism for synthesis of IIIa-g
Figure 21. Mechanism of nucleophilic addition-elimination reaction suggested for synthesis of 4-(4-(substituted)phenylamino)-4-oxobutanoic acid VIa,b,e81
Figure 22. Formation of cyclic imide upon heating
Figure 23. One dose mean graph of compound IIf: nine tested panels are colour coded
Figure 24. Concentration- inhibition response curves of synthesized compounds against HepG2 cancer cell line
Figure 25. Molecular modeling of (SAHA) (14) cocrystallized to the active site of HDLP with PDB code (1C3S)
Figure 26. The superimposition between the top docking pose (purple carbons) and original crystallographic geometry (cyan carbons) having a measured RMSD 0.88 ⁰ .
Figure 27. Molecular modeling of two novel synthesized compounds IIc (<i>E</i>) and IIIg (<i>E</i>), binding to the active site of HDLP having PDB code (1C3S) were shown to compare binding interactions
Figure 28. Constraint distances and angles between features of the generated top pharmacophore model
Figure 29. The best generated pharmacophore model with the features considered HBA colored in green, RA colored in orange, HYP colored in cyan119
Figure 30. Docking model (A) coincides with 3D QSAR pharmacophore model (B) for E-isomer of newly synthesized compound IIf (E) having a measured IC ₅₀ of 10.21 µM

Figure 31. Docking model (A) coincides with 3D QSAR pharmacophore model	
(B) for Z isomer of newly synthesized compound IIf (Z) having a measured IC ₅₀ of	of
849.2 μM12	28
Figure 32. The corresponding scatter plots of the experimental versus the predicted bioactivity values $-\log IC_{50}$ for the training set compounds according to	
Equation 113	33

List of tables

Table 1. List of some non-histone protein substrates, see text for reference22
Table 2. Active site amino acid residues in HDLP, HDAH and human HDACs (1 - 8)
Table 3. Docking scores of the top-ranked poses of the modeled molecules52
Table 4. Sixty human tumor cell line anticancer screening data at single dose assay (10 ⁻⁵ M concentration) as percent cell growth promotion of IIb-f (<i>E</i>), IIIf (<i>E</i>), VIb, VIIf.
Table 5. Data of the <i>in vitro</i> anticancer activity on HepG2 cancer cell line95
Table 6. The percentage inhibition of synthesized compounds at 10 μM concentration against HDAC1
Table 7. The percentage inhibition of compounds IIf (E), IIIa (E) and VIIa at 50 μM concentration against (HDAC2 - 11)98
Table 8. Docking results for the synthesized compounds as well as SAHA in the binding site of HDLP enzyme PDB (1C3S) showing binding modes and affinities.
Table 9. The IC ₅₀ values against HepG2 cancer cell line and docking scores of the synthesized carboxylic acid compounds IIb-f (E), IIb,f (Z), VIa,b,e, VIIa, f and VIIIa,e
Table 10. Training set composed of 21 synthesized structures in this study and SAHA (14) used for pharmacophore generation
Table 11. Constraint distances and angles between features of the generated top pharmacophore model
Table 12. Fit values and predicted activities for the 21 synthesized compounds mapped with the generated 3D-pharmacophore model
Table 13. The pharmacophore features (HBA_1, HBA_2, HYP_3, and RA) mapped with the synthesized compounds and SAHA, as well as their fit values. 120

		Training set co	1			J	1			
QSAR	•••••	•••••	••••••	•••••	•••••		•••••	•••••		.131
Table	15.	Experimental	activity	of	the	synthesize	d compour	nds a	against	the
predict	ted a	activity according	g to Equa	atior	ı 1			• • • • • •		134

List of abbreviations

2D: 2-Dimentional

3D: 3-Dimentional

3D QSAR: 3-Dimentional Quantitative structure activity relationship

4-DMAP: 4-dimethylaminopyridine

Å: Angstrom

Adj: Adjusted

AML: Acute myeloid leukemia

Asn: Asparagine

Asp: Aspartate

Bcl-2: B-cell lymphoma 2

BSA: Bovine serum albumin

CDK: Cyclin dependent kinase

CHAPs: Cyclic hydroxamic acid-containing peptides

CLL: Chronic lymphocytic leukemia

CML: Chronic myeoid leukemia

CTCL: Cutaneous T-cell lymphoma

DMF: Dimethylformamide

DMSO: Dimethyl sulphoxide

DNA: Deoxyribonucleic acid

EDTA: Ethylenediaminetetraacetic acid

ELISA: Enzyme linked immunosorbent assay

FBS: Fetal bovine serum

FDA: Food and Drug Adminstration

FT-IR: Fourier transform-Infrared

HAT: Histone acetyl transferase

HBA: Hydrogen bond acceptor

HBD: Hydrogen bond donor

HCC: Hepatocellular carcinoma

HDA1: Histone deacetylase 1

HDAC: Histone deacetylase

HDACIs: Histone deacetylase inhibitors

HDAH: Histone deacetylase like amidohydrolase

HDLP: Histone deacetylase-like protein

HIF: Hypoxia inducible factor

His: Histidine

HL: Hodgkin's Lymphoma

H: Hours

HSP90: Heatshock protein 90

HYP: Hydrophobic

IC₅₀: 50% Inhibitory concentration

MHz: Mega Hertz

Mp: Melting point

MS: Mass spectroscopy

NCI: National Cancer Institute

NMP: N-methyl-2-pyrrolidone

NMR: Nuclear magnetic resonance

PDB: Protein data bank

Phe: Phenylalanine

POC: phosphorous oxy chloride

ppm: part per million

Pred: predicted

RA: Ring aromatic

Ras: Rat sarcoma

RNA: Ribonucleic acid

ROS: Reactive oxygen species

Rpd3: Reduced potassium dependency 3

RPMI: Roswell Park Memorial Institute medium

RUNX: Runt-related transcription factor

SAHA: Suberoylanilide hydroxamic acid

SIRT: Sirtuins

SNAr: Nucleophilic Aromatic Substitution reactions

SUMO: Small Ubiquitin-like Modifier

SRB: Sulforhodamine B

SRM: Surface recognition moiety

TCA: Trichloroacetic acid

THF: Tetrahydrofuran

TPX: Trapoxins

TSA: Trichostatin A

TSG: Tumor suppressor gene

VEGF: Vascular endothelial growth factor

VEGFR: Vascular endothelial growth factor receptor

ZBG: Zinc binding group

Abstract

Title of Thesis

Molecular design and synthesis of histone deacetylase inhibitors as antineoplastic agents

Name of candidate

Mona Mohamed Abdelatty Mohamed Hussein

Teaching assistant of Pharmaceutical Chemistry

Misr International University

Thesis supervised by

Prof. Dr. / Khaled A. Abouzid

Dr. / Shaymaa E.Kassab

Dr. / Rabah A. T. Serya