Study on placental prostatespecific antigen in preeclamptic Egyptian women

Thesis Submitted by

May Malak M. Tadros

(M.Sc. in Biochemistry, 2012)

For the Award of the Degree of Doctor of Philosophy in Biochemistry

Under Supervision of

Prof. Dr. Nadia Y. S. Morcos

Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Mahmoud M. S. Abd El-Hamid

Assistant Prof. of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Fady M. Benjamine

Lecturer of General Surgery Faculty of Medicine Ain Shams University

Ain Shams University Faculty of Science Biochemistry Department

2016

Declaration

This thesis has not been submitted for a degree at this or any other university

May Malak M. Tadros

Dedication

To my husband, my daughter, my father, my mother, my brother,

d

My real friends
Their love, encourage, help and prayers
made studies possible and to them I owe
everything.

Acknowledgement

I would like to thank from all of my heart and from my deep soul *Dr. Nadia Y. S. Morcos*, Professor of Biochemistry, Faculty of Science, Ain Shams University, to whom I am so grateful for her endless help, motherly attitude, creative thinking, valuable suggestions and constant advice during this work. Without her support, the performance of this work would be difficult.

I am so grateful to *Dr. Mahmoud M. Said Abd El-Hamid*, Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for his spiritual and practical guidance, his enthusiastic encouragement and revising every detail, as well as profound reading of the manuscript.

Thanks are also due to *Dr.Fady M. Benjamine*, Lecturer of General Surgery, Faculty of Medicine, Ain Shams University for his cooperation and kind help in samples collection.

Thanks are also due to my husband *Dr. Joseph Magdy* (Obstetrician-Gynecologist) for his cooperation, encouragement and kind help in this work.

My deep thanks and regards are also due to the staff members of the Biochemistry Department, Faculty of Science, Ain Shams University for their support and help.

Biography

Name: May Malak Matter Tadros

Date and place of birth: 14/5/1987, Cairo, Egypt

Date of Graduation: 2008

Degree Awarded: M.Sc. in Biochemistry, 2012

Grade: Ph.D. in Biochemistry

Contents

Abstract		
List of Tables		
List of Figures		
List of Abbreviations		
Introduction and Aim of the Work		
Introduction		
Aim of Work		
Chapter I: Review of Literature		
1.1 Introduction	1	
1.1.1. <i>Implantation</i>	1	
1.1.2. Placental role in fetus growth	7	
1.1.3. Determination of gestation age	8	
1.2. Preeclampsia	9	
1.3. Mechanism of preeclampsia	12	
1.3.1. Placental ischemia	12	
1.3.2. Angiogenic imbalance	18	
1.3.3. Renin-angiotensin-aldosterone	21	
1.3.4. <i>Inflammation</i>	23	
1.4. Maternal risk factors	25	
1.4.1. <i>Nulliparity</i>	26	
1.4.2. <i>Obesity</i>	27	
1.4.3. <i>Diabetes</i>	27	
1.4.4. <i>Ethnicity</i>	30	
1.5. Other contributory factors to the development of		
preeclampsia	31	
1.5.1. <i>Immune factors</i>	31	
1.5.2. Alterations in placental enzymes	32	
1.5.3. Genetic factors	34	
1.6. Oxidative stress	35	
1.6.1. Oxidative stress and preeclampsia	37	
1.7. Prostate specific antigen	43	
1.8. Interleukin 6	46	
1.8.1. IL6 in the peri-conception and implantation period	50	

1.8.2. IL6 in placental development and function	51	
1.8.3. <i>IL6 in preeclampsia</i>	53	
1.9. Estrogens	54	
1.9.1. Synthesis of estrogens	54	
1.9.2. Endogenous sources of estrogens	56	
1.9.3. Transport and metabolism of estrogens	57	
1.10. Metals and preeclampsia	61	
1.10.1. <i>Copper</i>	61	
1.10.2. <i>Zinc</i>	62	
1.10.3. <i>Calcium</i>	63	
Chapter II: Subjects and Methods	67	
2.1. Subjects	67	
2.1.1. <i>Diagnosis</i>	67	
2.1.2. <i>Plan of the work</i>	68	
2.2. Methods	68	
2.2.1. Tissue sampling	68	
2.2.2. Biochemical analysis	69	
2.3. Statistical Analysis & Equation Used	97	
Chapter III: Results	99	
Chapter IV: Discussion	126	
Conclusion & Recommendation	152	
Summary		
References		
Arabic Abstract		
Arabic Summary		

Study on placental prostate-specific antigen in preeclamptic Egyptian women

May Malak M. Tadros

Abstract

The present study was undertaken to elucidate the mechanisms for the pathogenesis of preeclampsia (PE) in Egyptian women. To fulfill the target of the study, a total of fifty women at delivery were recruited, including twenty five pregnant women with preeclampsia and twenty five normotensive pregnant females. The biomarkers studied included blood pressure, complete blood picture, albuminuria as well as placental prostate specific antigen (PSA), 17-β estradiol (E2), interleukin-6 (IL-6), lipid peroxidation (MDA), glutathione peroxidase (GPx) and trace elements (Zinc, Copper and Calcium).

Our results demonstrated a significant difference in the systolic blood pressure (p<0.001), diastolic blood pressure (p<0.001), albuminuria (p<0.001), platelets (p<0.049), hemoglobin (p<0.014), placental PSA (p<0.002), IL-6 (p<0.05) and 17- β estradiol (p<0.012) in preeclamptic women

compared with normotensive pregnant women. In addition, a positive correlation was recorded between placental PSA and each of systolic blood pressure, diastolic blood pressure, platelets and albuminuria whereas a negative correlation was recorded between placental PSA and each of placental IL-6 and 17- β estradiol.

In conclusion, the results of the current study indicate that the correlation between placental PSA and 17- β estradiol may give us a new understanding of the pathogenesis whereas the decreased placental 17- β estradiol is likely due to an alteration in the aromatase pathway which leads to an increase in the level of androgen with a subsequent increase in the PSA.

List of Tables

No.	Title	Page
2.1.	Activity of serum AST.	93
2.2.	Activity of serum ALT.	93
3.1.	Study population at delivery characteristics in control (normal pregnancy) and PE pregnancies.	101
3.2.	Blood biochemical markers at delivery in control and PE pregnancies.	102
3.3	Placental tissue analysis at delivery in control and PE pregnancies.	103
3.4.	Inorganic elements in placental tissue (ash) at delivery in control and PE pregnancies.	105
3.5.	Significant correlations (sperman's rho) between chosen markers (all groups).	106
3.6.	Crosstabulation showing the reability of markers of preeclampsia.	121
3.7.	Regression analysis of predictive parameters	125

List of Figures

No.	Title	Page
1.1.	Cleavage of the zygote and formation of the blastocyst.	2
1.2.	Implantation of the human embryo.	5
1.3.	Events of placentation, early embryonic development and extraembryonic membrane formation.	6
1.4.	Placental circulation	8
1.5.	Preeclampsia distribution worldwide.	9
1.6.	Integrated model of the complex pathophysiology of preeclampsia.	13
1.7.	Abnormal placentation in preeclampsia.	15
1.8.	Mechanisms of endothelial dysfunction in preeclampsia.	17
1.9.	The angiogenic imbalance in PE and FGR.	19
1.10.	Role of the soluble form of Fms-like tyrosine kinase 1 in the maternal syndrome of preeclampsia.	20
1.11.	Pathophysiological role of angiotensin II type I receptor (AT ₁ R) preeclampsia	22
1.12.	Pathophysiological role of angiotensin II type I receptor (AT_1R) agonistic autoantibodies (AT_1 - AA) in preeclampsia by antibody transfer experiments.	22
1.13.	Differential distribution of macrophages in normal pregnancy and pregnancy complicated with preeclamsia and IUGR.	24

1.14.	Factors affecting preeclampsia.	25
1.15.	Deficiency of COMT in preeclampsia.	33
1.16.	Proposed association between placental oxidative stress and maternal vascular dysfunction in preeclampsia.	40
1.17.	A schematic diagram of the pro- and anti- inflammatory pathways operating in labour.	47
1.18.	Formation of estriol in the placenta.	57
1.19.	Ovarian synthesis, transport, and metabolism of estrogens.	60
1.20.	Calcium metabolism in preeclampsia.	66
2.1.	Calibration curve of FPSA.	72
2.2.	Calibration curve of IL6.	77
2.3.	Calibration curve of Estradiol	82
3.1.	Changes (%) in systolic blood pressure (SDP), diastolic blood pressure (DSP), and albumin in PE pregnancies from controls (normal pregnancy), at delivery.	101
3.2.	Changes (%) in blood biochemical markers in PE pregnancies from controls (normal pregnancy), at delivery.	102
3.3.	Changes (%) in placental tissue markers in PE pregnancies from controls (normal pregnancy), at delivery.	104

3.4.	Changes (%) in inorganic elements in placenta (ash) in PE pregnancies from controls (normal	105
3.5.	pregnancy), at delivery. Correlations between PSA and Estradiol (upper) and IL-6 (lower) in placental tissues in all	107
3.6.	groups. Correlations between placental PSA and Platelets (upper) and systolic blood pressure (lower) in all groups.	108
3.7.	Correlations between placental PSA and diastolic blood pressure (upper) and Albuminuria (lower) in all groups.	109
3.8.	Correlations between placental Estradiol and placental IL-6 (upper) and platelets (lower) in all groups.	110
3.9.	Correlations between placental Estradiol and diastolic blood pressure(upper) and platelets (lower) in all groups.	111
3.10.	Correlations between placental IL-6 and systolic blood pressure (upper) and diastolic blood pressure (lower) in all groups.	112
3.11.	Correlations between placental IL-6 and albuminuria (upper), and between platelets and placenta calcium (lower) in all groups	113
3.12.	Correlations between platelets and albuminuria (upper), and between placental calcium and placental copper (lower) in all groups	114
3.13.		115

3.14.	Receiver operating characteristic curve (ROC) with prediction model for PE with free prostate specific antigen (PSA).	116
3.15.	Receiver operating characteristic curve (ROC) with prediction model for PE with Estradiol.	117
3.16.	Receiver operating characteristic curve (ROC) with prediction model for PE with hemoglobin	118
3.17.	Receiver operating characteristic curve (ROC) with prediction model for PE with platelets	119
3.18.	Receiver operating characteristic curve (ROC) with prediction model for PE with IL-6	120
3.19.	Box plots of systolic blood pressure (SBP) and diastolic blood pressure in patients with preeclampsia (n=25) and control (n=25).	122
3.20.	Box plots of Albuminuria level in patients with preeclampsia (n=25) and control (n=25).	123
3.21.	Box plots of free prostate specific antigen (PSA) and estradiol levels in patients with preeclampsia (n=25) and control (n=25).	124

List of abbreviations

AF : Amniotic fluid

ALX : Lipoxin A₄ receptor

AT1 : Angiotensin II type 1

AT₁-AA : Agonistic autoantibodies

AT₁R : Angiotensin II type I receptor

AUC : Area under the curve

bFGFs : Basic fibroblast growth factors

BMI : Body mass index

Ca : Calcium

CBC : Complete blood picture

CO₂ : Carbon dioxide

COMT : Catechol-O-methyl transferase

COX2 : Cyclooxygenase 2

Cu : Copper

DBP : Diastolic blood pressure

 \mathbf{E}_2 : 17-β estradiol

 $\mathbf{E_1}$: Estrone $\mathbf{E_3}$: Estriol

EGF : Epidermal growth factor

eNOS : Endothelial nitric oxide synthase

FGR : Fetal growth restriction

FLT-1 : Fms-related tyrosine kinase 1 **FPSA** : Free prostate specific antigen

GPx : Glutathione peroxidase H₂O₂ : Hydrogen peroxide

HB : Hemoglobin

HbA1c : Glycated hemoglobin

hCG : Human chorionic gonadotropinHDL-C : High density lipoprotein cholesterolHIV : Human immunodeficiency virus

HLA-C : Killer immunoglobulin receptor ligands present on

trophoblasts

HO : HemooxygenaseHO-1 : Heme oxygenase-1HRP : Horseradish peroxidase

ICSI : Intracytoplasmic sperm injection

IFN γ : Interferon gamma

IGF-1 : Insulin-like growth factor-1

IL-2 : Interleukin-2IL-6 : Interleukin-6IQR : Interquartile range