# Comparative Study between Measuring (FSH, LH and E2) on Day two and on any Day of the Cycle

### Chesis

Submitted for partial fulfillment of master Degree in Obstetrics and Gynecology

Ву

#### Shaimaa Mohamed Ali

M.B.B.Ch,(2008), Faculty of Medicine – Cairo University Resident of Ob/Gyn 6 October Central Hospital

## Supervised by

### **Prof. Shereif Abd El Hameed**

Professor of Obstetrics and Gynecology Faculty of Medicine –Ain Shams University

### **Prof. Ahmed Husseiny Salama**

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine –Ain Shams University

### **Prof. Dina Husseiny Salama**

Assistant Professor of Radiodiagnosis National Center for Radiation Research and Technology

Faculty of medicine

Ain Shams University

2017



سورة البقرة الآية: ٣٢

# Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful. I can do nothing without Him.

I would like to express my sincere gratitude to **Prof.**Shereif Abd El Hameed, Professor of Obstetrics and Gynecology, Faculty of Medicine –Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

My deep gratitude goes to **Prof. Ahmed Husseiny Salama**, Assistant Professor of Obstetrics and Gynecology, Faculty of Medicine -Ain Shams University, for his great support, tireless guidance and meticulous supervision throughout this work.

I would like also to than with all appreciation **Prof.**Dina Husseiny Salama, Assistant Professor of Radiodiagnosis, National Center for Radiation Research and Technology, for the efforts and time she has devoted to accomplish this work.

Last but not least, I like to thank all my Family, especially my Parents and my Husband, for their kind care, help and encouragement.

### **List of Contents**

| Subject                | Page No. |
|------------------------|----------|
| List of Abbreviations  | i        |
| List of Tables         | ii       |
| List of Figures        | vi       |
| Abstract               | vii      |
| Introduction           | 1        |
| Aim of the Work        | 7        |
| Review of Literature   | 8        |
| Patient and Methods    | 34       |
| Results                | 39       |
| Discussion             | 58       |
| Summary and Conclusion | 63       |
| Recommendations        | 66       |
| References             | 67       |
| Arabic Summary         | —        |

### **List of Abbreviations**

Abbr. Full-term

**AFC** : Antral follicle count

**AMH** : Anti-Mullerian Hormone

**ART** : Assisted reproductive technique

**BMI** : Body mass index

**COH** : Controlled ovarian hyperstimulation

**CP** : Clinical pregnancy

**DHEA** : Dehydroepiandrosterone

**DOR** : Diminished ovarian reserve

**FGAs** : Functioning gonadotroph adenomas

**FSH** : Follicle-stimulating hormone

**GnRHa** : Gonadotropin releasing hormone

**HIV** : Human immune deficiency virus

**ICSI** : Intra cytoplasmic sperm injection

**IHH** : Isolated Hypogonadotroiic Hypogonadism

**IQR** : Interquartile range

**IVF** : In vitro fertilization

**LB** : Live birth

**LH** : Luteinising hormone

**ORT** : Ovarian reserve tests

**PCOS** : Polycystic ovary syndrome

**POI** : Primary ovarian insufficiency

**RIA** : Radioimmunoassay

**SD** : Standard deviation

**SPSS** : Statistical package for social science

**TSH** : Thyroid-stimulating hormone

**TVUS**: Transvaginal ultrasonography

# **List of Tables**

| Cable N            | o. Eitle                                                                                       | Page No.                              |
|--------------------|------------------------------------------------------------------------------------------------|---------------------------------------|
| Table (1):         | Summary of clinical situations when determinations are useful or are conrequested              | mmonly                                |
| <b>Table (2):</b>  | Acquired Causes of HH                                                                          | 28                                    |
| <b>Table (3):</b>  | Frequency distribution of the patients as regard their age                                     |                                       |
| <b>Table (4):</b>  | Frequency distribution of the patients as regard history of PCO                                |                                       |
| <b>Table (5):</b>  | Frequency distribution of the patients as regard history of Infertility                        |                                       |
| <b>Table (6):</b>  | Frequency distribution of the patients as regard cycle irregularity                            |                                       |
| <b>Table (7):</b>  | Frequency distribution of the patients as regard Parity                                        |                                       |
| <b>Table (8):</b>  | Description of the studied hormone va                                                          | alues 44                              |
| <b>Table (9):</b>  | Comparison between FSH Levels at 3 <sup>rd</sup> and 4 <sup>th</sup> samples                   | 1st, 2 <sup>nd</sup> , 45             |
| <b>Table</b> (10): | Comparison between LH Levels at 3 <sup>rd</sup> and 4 <sup>th</sup> samples                    | 1 <sup>st</sup> , 2 <sup>nd</sup> ,45 |
| <b>Table</b> (11): | Comparison between E2 Levels at 3 <sup>rd</sup> and 4 <sup>th</sup> samples                    | 1 <sup>st</sup> , 2 <sup>nd</sup> ,46 |
| <b>Table (12):</b> | Comparison between E2/FSH Levels 2 <sup>nd</sup> , 3 <sup>rd</sup> and 4 <sup>th</sup> samples | s at 1 <sup>st</sup> ,46              |
| <b>Table</b> (13): | Correlation between E2/FSH Leve sample) and Age                                                | els (1 <sup>st</sup>                  |
|                    |                                                                                                |                                       |

| <b>Table (14):</b> | Correlation between E2/FSH Levels (1 <sup>st</sup> sample) and FSH, E2 (1 <sup>st</sup> sample)                                                     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table (15):</b> | Correlation between E2/FSH Levels (2 <sup>nd</sup> sample) and FSH, E2 (1 <sup>ST</sup> sample)                                                     |
| <b>Table</b> (16): | Correlation between E2/FSH Levels (3 <sup>rd</sup> sample) and FSH, E2 (1 <sup>ST</sup> sample)                                                     |
| <b>Table</b> (17): | Correlation between E2/FSH Levels (4 <sup>th</sup> sample) and FSH, E2 (1 <sup>ST</sup> sample)                                                     |
| Table (18):        | Comparison between E2/FSH Ratio at 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> and 4 <sup>th</sup> samples as regard history of PCO         |
| Table (19):        | Comparison between E2/FSH Ratio at 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> and 4 <sup>th</sup> samples as regard history of Infertility |
| Table (20):        | Comparison between E2/FSH Ratio at 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> and 4 <sup>th</sup> samples as regard Cycle Irregularity     |
| <b>Table (21):</b> | Comparison between E2/FSH Ratio at 1 <sup>st</sup> , 2 <sup>nd</sup> , 3 <sup>rd</sup> and 4 <sup>th</sup> samples as regard Parity                 |
|                    |                                                                                                                                                     |

# **List of Figures**

| Eable No.           | Title                                                                        | Page No.                |
|---------------------|------------------------------------------------------------------------------|-------------------------|
| Figure (1):         | Laboratory testing to confirm diagraprimary ovarian insufficiency            |                         |
| Figure (2):         | Frequency distribution of the studied as regard their age                    | •                       |
| Figure (3):         | Frequency distribution of the studied as regard history of PCO               |                         |
| Figure (4):         | Frequency distribution of the studied as regard history of Infertility       |                         |
| Figure (5):         | Frequency distribution of the studied as regard cycle irregularity           |                         |
| Figure (6):         | Frequency distribution of the studied as regard Parity                       | •                       |
| <b>Figure (7):</b>  | Correlation between E2/FSH Levesample) and Age                               |                         |
| <b>Figure (8):</b>  | Correlation between E2/FSH (1 <sup>st</sup> and FSH (1 <sup>ST</sup> sample) | sample) 49              |
| Figure (9):         | Correlation between E2/FSH Levesample) and E2 (1 <sup>ST</sup> sample)       | els (1 <sup>st</sup>    |
| <b>Figure (10):</b> | Correlation between E2/FSH Leve sample) and FSH (1 <sup>ST</sup> sample)     | els (2 <sup>nd</sup> 51 |
| <b>Figure (11):</b> | Correlation between E2/FSH Leve sample) and E2 (1 <sup>ST</sup> sample)      | els (2 <sup>nd</sup> 51 |
| <b>Figure (12):</b> | Correlation between E2/FSH Leve sample) and FSH (1 <sup>ST</sup> sample)     | els (3 <sup>rd</sup> 53 |
| <b>Figure</b> (13): | Correlation between E2/FSH Lever sample) and E2 (1 <sup>ST</sup> sample)     | els (3 <sup>rd</sup> 53 |

| $\square$ $\boldsymbol{\mathscr{L}}$ | ist of | Fig | ures |
|--------------------------------------|--------|-----|------|
|--------------------------------------|--------|-----|------|

| <b>Figure (14):</b> | Correlation sample) and |  |  | . 55 |
|---------------------|-------------------------|--|--|------|
| Figure (15):        | Correlation sample) and |  |  | . 55 |

#### **ABSTRACT**

Background: Evaluation of ovarian reserve has become an essential part of the treatment assessment of woman about to undergo assisted reproductive technique. Aim of the Work: To evaluate measuring (FSH, LH and E2) at any day of the whole (menstrual cycle) compared to mandatory day2 measurement and establishing an actual negative correlation between FSH & E2. Patients and Methods: Observational analytical prospective study on 50 women attending the Gynecology outpatient clinics of Maternity hospital Ain-Shams University in 2016. Results: There was a significant negative correlation between (E2/FSH) on the 3<sup>rd</sup>, 5<sup>th</sup> and 10<sup>th</sup> days of the cycle. Also there was insignificant negative correlation on day 21. Conclusion: there negative correlation between basal (day2)(E2/FSH) which is equivalent or similar to that ratio on days (5,10,21) so there is no need to wait for hormonal analysis to the next cycle (day 2 or 3) to save time specially in patients >35 years for them there is importance of cycle day3 for evaluation of ovarian reserve and prior ovulation induction and subsequent pregnancy potential during the infertility work up. Recommendations: During the infertility work up, rigid adherence to cycle day3 collection, no longer seems necessary ,no need to wait for hormonal analysis to Estradiol and FSH to the next cycle as there is equivalent negative correlation between (E2/FSH) on menstrual cycle days (3,5,10,21) aiming for saving time.

Key words: FSH, LH, E2, menstrual cycle

### Introduction

The concept of ovarian reserve as assessed by follicle stimulating hormone (FSH) measurement has proven useful in predicting pregnancy outcome (*Scott and Hoffman*, 1995). Determination of cycle day 3 FSH has evolved as the standard for predicting oocyte quality and the likelihood of conception in assisted reproductive technology programmes. The information obtained from cycle day 3 FSH testing is invaluable in counselling patients as to their chances of achieving a pregnancy and deciding on options for stimulation protocols (*Scott et al.*, 1989).

Muasher et al. (1988) demonstrated that basal cycle day 3 concentrations of FSH reflected the reproductive potential of that menstrual cycle. This could be applied further to discriminate between patients who would be more likely to respond to ovarian stimulation and those who would not (Toner et al., 1991). Cycle day 3 testing has emerged as a dictum from these studies because most stimulation protocols were initiated on cycle day 3, 4 or 5 (Jones et al., 1984; Marrs et al., 1984). The validity of testing on other days has not yet been explored. Early follicular phase oestradiol concentrations may reflect die stage of follicular development, with higher concentrations associated with asynchrony of follicular development An abrupt early rise of oestradiol may be a subtle sign of the shortened follicular phase often seen prior to menopause. The purpose of this study was to evaluate the intra- and inter-cycle variability of serum values of FSH and oestradiol in the early follicular phase (cycle days 2-5) (*Hansen et al.*, 1996).

The importance of cycle day 3 FSH for evaluation of ovarian reserve and subsequent pregnancy potential has recently been emphasized in women >35 years during the infertility workup (Scott and Hofmann, 1995). Basal FSH values have been utilized to decide on treatment protocols and to counsel patients as to their potential pregnancy success (Toner et al., 1991). Many authors attest to the importance of cycle day 3 testing (Fenichel et al., 1989; Pearlstone et al., 1992; Tanbo et al., 1992). The emphasis on cycle day 3 testing seems to have evolved in part from convenience, based on the cycle day 3 start of most stimulation protocols (Jones et al., 1984; Marres et al., 1984). According to *Hodgen's work (1989)*, early follicular growth and recruitment occur in the beginning of the cycle prior to cycle days 5-7. By day 7 the one follicle destined to ovulate has been selected. Since the objective in ovarian hyperstimulation for assisted reproductive technology is to recruit more than one dominant follicle, stimulation must be initiated prior to the loss of this multipotentiality of the follicles. Before the widespread use of (GnRHa), stimulation

protocols traditionally began on cycle day 3 or 4. Thus, basal testing had to be performed by cycle day 3. According to our data, testing for FSH on any of cycle days 2-5 will give equivalent results, regardless of patient age (*Hansen et al.*, 1996).

Ovarian reserve tests (ORT) help to predict the response to exogenous gonadotrophin stimulation and the likelihood of success with IVF and are widely accepted as an essential element of the evaluation of IVF (*Speroff & Fritz*, 2005). .

ORT can roughly be divided into three groups: (Haadsma et al., 2007).

These tests measure early follicular phase hormones level and they include: Female age; Cycle day 3 serum FSH concentration; Cycle day 3 serum estradiol (E2) concentration; Cycle day 10 serum progesterone(P) concentration; Cycle day 3 serum Inhibin B concentration; Serum Anti-Mullerian Hormone (AMH) concentration and Ovarian biopsies.

Basal FSH has been reported to be better predictor of ovarian response in IVF cycles stimulated with gonadotrophins than age (*Akira et al.*, 2005).

As women ages, FSH becomes elevated in an attempt to force the aging ovary to respond. It starts to increase because of reduced inhibin-B and E2 production by the diminished cohort of growing follicles. This event takes place a few years before the actual menopause (*Annemarie de vet et al.*, 2002).

The cycle day 3 FSH level is one of the most commonly used tests for predicting success in IVF treatment. This was first described by *Muasher et al.* (1988), and *Lenton et al.* (1988) demonstrated that women with an elevated cycle day 3 FSH had reduced ovarian reserve. Since then, several studies have shown that women with an elevated FSH level, independent of age, have a poor response to ovarian stimulation, leading to a lower pregnancy rate with assisted reproductive technique (ART) (*Abdalla and Thum*, 2004).

The basal level of serum FSH is used as a screening test for patients undergoing IVF. It is well documented that a high day 3 basal level of FSH is associated with a lower pregnancy rate. Indeed, some Units have been using this test to screen patients with a lower chance of a pregnancy in view of maintaining high clinic success rates (*Abdalla and Thum*, 2006).

In reproductive endocrinology, basal FSH is measured in order to detect women with ovarian failure. FSH measured in serum on day 3 of the menstrual cycle is probably the most