Counter Phaco-Prechop Technique In Hard Cataract

Thesis

Submitted in the Partial Fulfillment of the MD Degree in Ophthalmology
By

Dina Abdel Monem Ali Ibrahim

M.B.B.Ch, M.SC. (Ophthalmology)

Faculty of medicine

Cairo University

Under Supervision of

Dr. Tarek Abdel Mageed Katamish

Professor of Ophthalmology

Faculty of Medicine

Cairo University

Dr. Tamer Ahmed Abdel Rahim Macky

Professor of Ophthalmology
Faculty of Medicine
Cairo University

Dr. Moustafa Shoukry Hunter

Lecturer of Ophthalmology
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University

2015

Acknowledgment

First of all, I must express the utmost gratitude to **ALLAH**, the most kind and merciful, for all the gifts his majesty has offered me.

No words can fulfill the feelings of gratitude and respect I carry to **Professor Dr. Tarek Katamish,** Professor of ophthalmology, Cairo University, for his great direction all through this work with a scientific personality and fruitful advice. It had been a great honor and extreme pleasure for me to proceed with this work under her supervision.

I am also very grateful to **Professor Dr. Tamer Macky**, Professor of ophthalmology, Cairo University, for his generosity, effort, close scientific guidance and outstanding help, without him this work could not be achieved.

I would like to express my sincere appreciation and deepest gratitude to **Dr. Moustafa Hunter**, lecturer of ophthalmology, Cairo University, for his continuous supervision, illuminating guidance, constructive criticism and wise counseling as well as patience and support throughout this work.

Then I must thank **my family** for their great care and assistance. Last, but of course not least I would like to thank all my colleagues in Department 16 for their help and assistance.

Abstract

Patients and methods:

This is a prospective comparative non-randomized clinical trial evaluating the efficacy and complications of 2 phacoemulsification surgical techniques: Group A: 20 patients using Phaco Counter Prechopping technique; and Group B: 20 patients using Stop and Chop technique. Outcome measures are A) Intraoperative phaco (ultrasound) time, cumulative dissipative energy (CDE) and complications; and B) Post-operative changes in corneal endothelial cell loss, cornea thickness and BCVA at 3 months compared to baseline. We experienced difficulty in acquiring the necessary surgical skills for the Counter Prechopping technique with a high intraoperative complications, thus it was necessary to stop at 14 attempted eyes in group A.

Results and discussion:

In group A (14 eyes) the mean effective phaco time was 59.9 ± 28.96 while in group B (20 eyes) it was 54.09 ± 27.39 seconds, statistically insignificant (P-value 0.623). The mean CDE was 32.47 ± 12.58 and 30.13 ± 10.58 for group A (14 eyes) and B (17 eyes) respectively, (P value 0.616). The ultrasound time in relation to nuclear grading: nuclear grade III, 44.21 ± 18.53 (24.6-78.9) and 41.07 ± 8.11 (30.7-59.8) for group A (9 eyes) and B (15) respectively, (P value 1.00); and nuclear grade IV, 88.14 ± 22.1 and 93.16 ± 28.11 for group A (5) and B (5) respectively, (P value 1.00). The CDE in relation to nuclear grading: nuclear grade III 26.11 ± 11 and 24.86 ± 4.39 for group A and B respectively, (P value 1.00), and nuclear grading IV was 43.9 ± 4.08 and 45.94 ± 3.97 for Group A and B respectively, (P-value 1.00). In nuclear cataract grade III, mean postoperative percentage endothelial cell loss at 3 months was 10.88 ± 3.33 and 11.86 ± 2.29 % for group A and B respectively, (P-value 0.091). In nuclear grade IV, mean postoperative percentage endothelial cell

loss at 3 months was 17±2.23 and 18±2.12 % for group A and B respectively, (P-value 0.091). No significant differences were found between both groups in the postoperative (3 months) BCVA nor the increase in the mean corneal thickness with nuclear grade III or IV. Intraoperatively 6 eyes in group A had tears in the posterior capsule compared to 3 eyes in group B, this was statistically significant between groups in nuclear grade III (P value 0.027). Regarding the length of the procedure in the operative theatre, there was no recognized difference between two groups, except for cases in group A-3 and B-2, where there were complications, the whole length of the operation was 7 minutes more than other cases.

Conclusion:

In general our small experience with the counter prechop technique showed a high rate of complications with a difficultly in acquiring the necessary surgical skills with no beneficial outcomes. Caution for surgeons interested in adopting this technique, is adviceed.

Key Words: Phacoemulsification- Phaco Prechop- Combo Prechopper- -Counter Prechop- Akahoshi

Table of contents

Abstract	I
Acknowledgment	III
List of figures	IV
List of tables	VII
List of Abbreviations	VIII
Introduction and aim of work	1
Review of literature	3
Patients and methods	58
Results	67
Discussion	78
Summary	96
References	98
Arabic Summary	108

List of Figures

Figure number	Title	Page
Figure 1	Phaco Flip emulsification	13
Figure 2	Crater divide and conquer	15
Figure 3	Trench Divide and Conquer	16
Figure 4	Trench Divide and Conquer, splitting and emulsification of the nucleus	17
Figure 5	Trench Divide and Conquer, Down slope technique	17
Figure 6	Crack and Flip technique, central groove starts at 6 o'clock position	18
Figure 7	Crack and Flip technique, nucleus rotation 90 degrees and second groove is performed	18
Figure 8	Crack and Flip technique, nucleus split into quadrants	18
Figure 9	Crack and Flip technique, the second instrument is used to rotate the blunt periphery downward and to lift the sharp apex safely upward to be engaged by the phaco probe	18
Figure 10	Phaco – Chop Technique	21
Figure 11	Stop and Chop Techniqu: Central groove	23
Figure 12	Stop and chop Technique: Fracturing of the nucleus into 2 parts	23
Figure 13	Stop and Chop Technique: Chopping of a triangular wedge	23
Figure 14	Stop and Chop Technique: Chopping of the second half	23
Figure 15	Phaco Forward - Chop Technique: Nucleus isn't separated into 2 hemispheres	25
Figure 16	Phaco Forward - Chop Technique: one hemisphere is dislocated anteriorely	25
Figure 17	Phaco Forward – Chop Technique: posterior nuclear part is chopped from posterior	25

Figure Number	Title	Page
Figure 18	Vertical Chop Technique	27
Figure 19	Horizontal Chop Technique	27
Figure 20	Phaco Slice and Separate Technique: First Slice	29
Figure 21	Phaco Slice and Separate Technique: Splitting of the nucleus into 2 halves	29
Figure 22	Phaco Slice and Separate Technique: Wedge Formation	29
Figure 23	Phaco Slice and Separate Technique: Subsequent Slices	29
Figure 24	Karate Chopping Technique: Phaco probe placed at the superior edge of the rhexis	31
Figure 25	Karate Chopping Technique: Phaco probe is embedded in the middle of the nucleus	31
Figure 26	Karate Chopping Technique: Left hand chops the nucleus	31
Figure 27	Karate Chopping Technique: Phaco probe is embedded in one end of the nucleus with further emulsification	31
Figure 28	Decrease and Conquer Technique : 3 Steps	33
Figure 29	Decrease and Conquer Technique: After circumferential separation of epinucleus is completed, the phaco tip holds the fully isolated yellow nuclear core	33
Figure 30	Retro Chop Technique	36
Figure 31	Retrochopper angled shaft and cutting edge	40
Figure 32	The Conventional Prechopper	39
Figure 33	The Universal Prechopper	39
Figure 34	The Combo Prechopper	40
Figure 35	Karate Prechop Technique: The sharp edge of the blade is placed at the centre of the nucleus and inserted downward	43
Figure 36	Karate Prechop Technique: The blunt edge is used to ascertain the complete nuclear	43

Figure Number	Title	Page
Figure 37	Karate Prechop Technique: A sign, denoting complete division	43
Figure 38	Karate Prechop Technique: V sign, indicating incomplete division division	43
Figure 39	Counter Prechopping Technique	49
Figure 40	Drill and Crach Technique	50
Figure 41	Drill and Crack Technique: An Akahoshi prechopper is inserted into the hole and cracks the nucleus into 2 hemispheres	52
Figure 42	Middle Prechop Technique	55
Figure 43	Counter Prechopping technique; (A) Nucleus sustainer (B) The hybrid prechopper	63
Figure 44	Insertion of the nucleus sustainer from the side port, passing just beneath the anterior capsule to the equatorial portion of the nucleus.	63
Figure 45	A- The sharp angled edge of the hybrid prechopper blade, is inserted closed into the core at the center of the nucleus, then pushing downward. B-The pre-chopper is opened at the deepest portion of the nuclear body repeatedly until complete nuclear division is obtained.	63

List of tables

Table	Title	Page
Number		1 uge
Table (1)	Sex Distribution, Age Distribution And Lens Grading in group A (Phaco Counter Prechop) and group B (Stop and Chop)	69
Table (2)	Preoperative Endothelial Cell Count & Preoperative Corneal Thickness In Group A and Group B	70
Table (3)	Preoperative Endothelial Cell Count in Group A and Group B in relation to lens grading	71
Table (4)	Preoperative corneal thickness in Group A and Group B in relation to lens grading	71
Table (5)	Ultrasound time And Cumulative Dissipative Energy (CDE) in group A and group B	72
Table (6)	Ultrasound time in relation to nucleus density in each group	73
Table (7)	CDE in relation to nucleus density in each group	73
Table (8)	Average postoperative percentage of endothelial cell loss after 3 months in relation to nucleus density in each group	74
Table (9)	Average Postoperative percentage increase in corneal thickness after 3 months in relation to nucleus density by group	75
Table (10)	Average Postoperative best corrected visual acuity in relation to nucleus density by group	75
Table (11)	The subgroups of Group A and B in relation to grade III cataract, intraoperative parameters (mean phaco time and mean CDE), postoperative mean percentage of endothelial cell loss and mean percentage increase in corneal thickness after 3 months	77
Table (12)	The subgroups of Group A and B in relation to grade III cataract, intraoperative parameters (mean ultrasound time and mean CDE), postoperative mean percentage of endothelial cell loss and mean percentage increase in corneal thickness after 3 months.	79
Table (13)	The subgroups of Group A and B, intraoperative parameters (mean ultrasound time and mean CDE), postoperative mean percentage of endothelial cell loss and mean percentage increase in corneal thickness after 3 months in the complicated cases.	81

List of abbreviations

DCVA	Doot competed viewal acritic
BCVA	Best corrected visual acuity
BSS	Balanced salt solution
CCC	Continuous curvilinear capsulorhexis
CDC	Crater divide and conquer
CDE	Cumulative Dissipated Energy
ECD	Endothelial Cell Density
MICS	Micro Incisional Cataract Surgery
IOL	Intraocular Lens
US	Ultrasound
MDC	Multidirectional divide and conquer
N I-IV	Nuclear hardness grade I
	Nuclear hardness grade II
	Nuclear hardness grade III
	Nuclear hardness grade IV
PCIOL	Posterior chamber intraocular lens
TDC	Trench divide and conquer
UCVA	Uncorrected visual acuity
OVD	Ophthalmic Viscosurgical Device

Introduction and aim of work

INTRODUCTION

Phacoemulsification yields successful outcomes in eyes with standard cataract. It is widely used for extraction of almost all kinds of cataractous lenses. (Vasavada, 1999)

The chances of intraoperative complications are high in the hands of surgeons who deal with hard cataracat occasionally. (Gonglore and Smith,1998)

Most complications of phacoemulsification result from ultrasonic power and time. Ocular tissue injury, especially irreversible corneal endothelial cell loss become prominent for hard cataracts. (Walkow et al,2000)

Many variations on phacoemulsification techniques have been described to decrease the total ultrasound time and energy used during nucleus emulsification. Though techniques have been improved, it is still challenging to perform phacoemulsification in cases of hard cataracts for difficulty in nuclear management and much more complications. (Buratto,1998)

Since the introduction of traditional phaco chop by Kunihiro Nagahara, many variations have been described. One of these variations is phaco prechop, or prephaco chop to be exact that was introduced by Takayuki Akahoshi. It is a nuclear fracture technique that is performed under viscoelastic material prior to phacoemulsification. Using this procedure, the surgeon can divide the nucleus without grooving or sculpting, which significantly facilitates phacoemulsification. For the nucleus harder than grade 3, a special prechopper forceps (Akahoshi hybrid combo prechopper) is used together with a nucleus manipulator to reduce the stress on the ciliary

zonules and lens capsule, a modification of karate prechop technique used for softer cataracts which is termed counter prechop technique. (Akahoshi, 2002)

AIM OF STUDY

This study is aimed at comparing the efficacy and safety of Phaco Counter Prechop technique versus Stop and Chop technique in removing hard cataracts.

Review of literature

Review of literature

Chapter (1): History and evolution

Chapter (2): Phacoemulsification

techniques

Chapter (3): Pre-Chopping techniques