The effect of different materials and preparation designs on the marginal adaptation and fracture resistance of esthetic onlays

A thesis submitted for the partial fulfillment of the Masters' Degree requirements in Crown & Bridge, Faculty of Dentistry,

Ain Shams University.

By

Mahmoud Mohamed Attia

B.D.S (2007)
Faculty of Dentistry
6th of October University
H.D.D (2011)
Faculty of Dentistry
Cairo University

Supervisors

A.Prof. Tarek Salah

Head of Crown and Bridge Department,
Ain Shams University
Assistant Professor of Fixed Prosthodontic
Faculty of Dentistry, Ain Shams University

Prof. Dr. Atef Shaker

Professor of Fixed Prosthodontic

Faculty of Oral & Dental Medicine, Cairo University

Prof. Dr. Nadia Fahmy

Professor and head of department of Fixed Prosthodontics Faculty of Dentistry Modern Sciences and Arts University

ACKNOWLEDGEMENT

➤ It is pleasure to express my sincere thanks and gratitude to:

Dr. Tarek Salah

For his supervision, guidance and valuable advice. His constant supports were of paramount importance for the initiation, progress and completion of this work.

➤ I would like to express my deepest thanks and sincere gratitude to my mentor:

Dr. Atef Shaker

For his assistance, constructive guidance, facilities, continuous encouragement in the initiation progress and completing of this study.

No words can describe the effort and help of my god mother:

Dr. Nadia Fahmy,

For her endless support, great help, meticulous supervision, continuous advices and guidance which were the cornerstone of this work.

- ➤ I am grateful for all the staff of the fixed prosthodontic department, Faculty of Dentistry Ain Shams University, for their continuous support.
 - ➤ I would like also to express my deepest thanks to my dear **Dr. Amina Zaki** for her valuable support and continuous help.
- ➤ I am grateful to my second family in fixed prosthodontic department MSA University, for their continuous help and support.
- ➤ I would like to thank all my assistants for their help and motivation.

$ ilde{\mathcal{D}}_{edication}$
My hearty and deepest appreciation to my family, especially my parents,
my dearly loved wife, and my beloved daughter for their endless
understanding, support and sympathy. Without them I wouldn't be able to
achieve my goals.

List of Contents

Title	Page No.
List of tables	ii
List of figures	iv
Introduction	1
Review of Literature	2
II.1. The significant of indirect restoration versus	
direct restorations in posterior teeth	2
II.2: Definition of inlays and onlays:	4
II.3Adhesion and its role in developing minimally invas	sive
preparations and partial coverage restorations:	4
II.3.1: Correlation between adhesive techniques, amoun	t of
tooth structure and indirect restoration:	4
II.3.2 Substrate surface treatment:	5
II.3.3 Selection of resin cements and tooth surface	
treatment	6
II.4: Preparation designs for inlays and onlays restoration	ons:7
II.5 Evolution of contemporary all ceramic	
system used for fabrication partial coverage restorations	s9
II.5.1: Sintering.	9
II.5.2: Heat pressing.	9
II 5 3: Copy milling	10

List of Contents

T	itle	Page No.
	II.5.4: CAD/CAM	10
	II.6: Advancement of CAD/CAM technology	11
	II.6.1.1: The advantage of digital impression over conventional technique.	11
	II.6.2: CAD / CAM components	11
	II.6.3: General classification of CAD/CAM systems	11
	II.6.4: Classifications of scanners	12
	II.6.5 CAD software	13
	II.6.6 Digital fabrication processes	13
	II.7: Available monolithic CAD/CAM materials used for	
	fabrication of esthetic onlays and mechanical properties affecting their selection	14
	II.7.1: Monolithic Materials	
	II.7.1.1: Ceramic materials	14
	II.7.1.1.1: Feldspathic Ceramic	14
	II.7.1.1.2: Lucite reinforced glass ceramic	15
	II.7.1.1.3: Lithium disilicate glass ceramics	15
	II.7.1.2: Composite monolithic material	16
	II.7.1.2.1: Paradigm MZ100	17
	II.7.1.2.2: Lava Ultimate	17
	II.7.1.2.3: VITA ENAMIC	17

List of Contents

Title	Page No.
II.7.2: Mechanical properties affecting selection of ceramic restorations.	18
II.8: Occlusal forces affecting posterior restoration:	18
II.9: Factor affecting longevity of ceramic inlays and	
onlays	19
II.10: Marginal Integrity	19
II.11: Fracture Resistance data	20
Statement of problem	22
Aim of the study	23
Materials and Methods	24
Results	79
Discussion	98
Summary and Conclusions	109
References	113
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1). Th	ne factorial experimental design	24
Table (2).Ch	emical composition of IPS e.max CAD	26
Table (3) Ch	emical composition of the fine-structure feldsperior ceramic network: VITA ENAMIC	
Table (4): M	aterial ratio - ceramic – polymer	27
Table (5).Phy	ysical properties of the tested ceramic materials	s28
Table (6): Th	ne materials used in this study	29
Table (7). Fea	atures of Cerec Omnicam	41
Table (8): Th	ne adjusted parameters of Cerec biogeneric	45
Table (9).Fir	ing parameters crystallization/glaze Lt/Ht	48
Table (10):	Descriptive statistics of marginal gap distar (μm)	
Table (11): F	Repeated measures ANOVA results for the effect of different variables on mean marginal g	
Table (12):	The mean, standard deviation (SD) values a results of repeated measures ANOVA comparison between marginal gap distant of the two ceramic types regardless of desired	and for ces
	and time	80

List of Tables

Table No.	Title	Page No.
Table (13): The mean, standard deviation (SD) values and		
	results of repeated measures ANOVA for	
	comparison between marginal gap distances	3
	of the two ceramic type with each design at	
	each time of measurement	81
Table (14):	The mean, standard deviation (SD) values a	ınd
	results of repeated measures ANOVA test	for
	comparison between gap distances of the fo	our
	designs regardless of ceramic type and time	of
	measurement	84
Table (15): 7	The mean, standard deviation (SD) values and	
	results of repeated measures ANOVA test for	or
	comparison between gap distances of the fo	ur
	designs with each ceramic type at each time	;
	of measurement	85
Table (16):	The mean, standard deviation (SD) values a	ınd
	results of repeated measures ANOVA test	for
	comparison between gap distances at differ	ent
	times of measurement regardless of cerar	nic
	type and design	87
Table (17):	The mean, standard deviation (SD) values	and
	results of repeated measures ANOVA test	t for
	comparison between gap distances at diffe	erent
	times of measurement with each ceramic	type
	and design	88

List of Tables

Table No.	Title	Page No.
Table (18):	Descriptive	e statistics of fracture resistance (N)90
Table (19)	•	ANOVA results for the effect of nt variables on mean fracture resistance91
Table (20):	results compar	of two-way ANOVA test for ison between fracture resistances of ceramic types regardless of design91
Table (21):	results compar	of two-way ANOVA test for ison between fracture resistances of ceramic types with each design
Table (22):	results compar	of two-way ANOVA test for ison between fracture resistances of designs regardless of ceramic type93
Table (23):	results compar	of two-way ANOVA test for ison between fracture resistances of designs with each ceramic type94
Table (24):	Fisher's	encies, percentages (%) and results of Exact test for comparison between e types in the different groups

Fig. No.	Title Page No.
Figure 1:	The Electric Digital Caliper (6"784ec, Se,China)
Figure 2: I	PS e-max CAD blocks26
Figure 3:	VITA ENAMIC blocks
Figure 4:	VITA ceramic etch30
Figure 5:	Uni-Etch30
Figure 6:	All Bond Universal
Figure 7:	Porcelain Primer30
Figure 8:	Duo-Link Universal
Figure 9:	Digital dipping machine31
Figure 10:	Teeth during dipping process
Figure 11:	Uniform wax layer after dipping process
Figure 12:	Samples after dipping
Figure 13:	Dental milling machine
Figure 14:	Inlay diamond set
Figure 15:	Occlusal and proximal views of MOD
	preparation35
Figure 16:	Bucco-Lingual view showing occlusal cavity
	depth
Figure 17:	Bucco-Lingual view showing axial wall taper36
Figure 18:	Bucco-Lingual view showing finishing of
	pulpal floor

Fig. No.	Title Page No.	
Figure 19:	Occlusal view of the finished MOD	
	preparation	
Figure 20:	Diagram for the four preparation designs38	
Figure 21:	Preparation for design 1 (D1) for IPS e-max	
	CAD and edsign 5 (D5) for VITA ENAMIC39	
Figure 22:	Preparation for design 2 (D2) for IPD e-max	
	CAD and design 6 (D6) for VITA ENAMIC39	
Figure 23:	Preparation for design 3 (D3) for IPS e-max	
	CAD and design 7 (D7) For VITA ENAMIC40	
Figure 24:	Preparation for design 4 (D4) for IPS e-max	
	CAD and design 8 (D8) for VITA ENAMIC40	
Figure 25:	Cerec Omnicam	
Figure 26:	Checking the preparation using prepcheck43	
Figure 27:	Finish line margin Tracing	
Figure 28:	Adjusted parameters45	
Figure 29:	The final view of seated restorations before	
	milling46	
Figure 30:	Cerec Mcxl	
Figure 31:	The block during milling	
Figure 32:	e-max CAD crystallization tray49	
Figure 33:	e-max CAD crystal glaze paste & liquid49	
Figure 34:	e-max CAD tray with fixed samples ready for	
	crystallization50	
Figure 35:	Furnace (Programat P510 Ivoclar)50	
Figure 36:	e-max CAD restorations after crystallization51	

Fig. No.	Title Page No.	
Figure 37:	VITA ENAMIC polishing set	
Figure 38:	Seating of the restoration before cementation	
Figure 39:	Seating of the restoration before cementation	
Figure 40:	surface treatment of the fitting surface, A	
	Hydrofluoric acid application, B Air dryness,	
	C Silane coupling agent application and D	
	Application of bonding agent54	
Figure 41:	Selective etching of enamel margins55	
Figure 42:	Application of bonding agent55	
Figure 43:	Dispensing the adhesive resin cement into the	
	cavity56	
Figure 44:	Applying the load along the central fossa57	
Figure 45:	Cemented samples fixed to the loading device57	
Figure 46:	The Stereomicroscope	
Figure 47:	Seated IPS e-max CAD Restorations	
Figure 48:	Cemented IPS e-max CAD restorations59	
Figure 49:	IPS e-max CAD restorations after	
	thermocycling60	
Figure 50:	Seated VITA ENAMIC restorations With60	
Figure 51:	Cemented VITA ENAMIC restorations61	
Figure 52:	VITA ENAMIC restorations after	
	thermocycling61	
Figure 53:	The Digital Sd Mechatronik thermocycler62	
Figure 54:	Universal testing machine	

Fig. No.	Title Page No.
Figure 55:	Metallic rod with spherical tip (5.6 mm
	diameter65
Figure 56:	Tin foil sheet in-between indentor and
	restoration65
Figure 57:	Bar chart representing comparison between
	mean marginal gap distances of the two
	ceramic types
Figure 58:	Bar chart representing comparison between
	mean marginal gap distances of the two
	ceramic types with each design at each time of
	measurement
Figure 59:	Bar chart representing comparison between
	mean gap distance values of the four designs
	regardless of ceramic type and time of
	measurement
Figure 60:	Bar chart representing comparison between
	mean gap distance values of the four designs
	with each ceramic type at each measurement
	time
Figure 61:	Bar chart representing comparison between
	mean gap distance values at different times of
	measurement regardless of ceramic type and
	design 86

Fig. No.	Title	Page No.
Figure 62:	Bar chart representing comparison between	
	mean gap distance values at different times	of
	measurement with each ceramic type and	
	design.	87
Figure 63:	Bar chart representing comparison between	
	mean fracture resistance values of the two	
	ceramic types	90
Figure 64:	Bar chart representing comparison between	
	mean fracture resistance values of the two	
	ceramic types with each design	91
Figure 65:	Bar chart representing comparison between	
	mean fracture resistance values of the four	
	designs	92
Figure 66:	Bar chart representing comparison between	
	mean fracture resistance values of the four	
	designs with each ceramic type	93
Figure 67:	Showing the failure types of the fractured	
	samples	93
Figure 68:	Bar chart representing fracture types in the	
	different groups	96