

"Evaluation and characterization of anticorrosive behavior of some new ecofriendly pigment alternatives in surface coatings"

A Thesis submitted for the degree of Master of Science as a partial fulfillment for requirements of The Master of Science

Inorganic Chemistry

Walaa Mohamed Abd El-Gawad

Thesis advisors

Prof.Dr. EglalMaryiam Raymond Souaya

Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof.Dr. Nivin Mohamed Ahmed Hussein

Professor of polymers and pigments, National Research Centre

Department of Chemistry-Faculty of Science
Ain Shams University
2015

"Evaluation and characterization of anticorrosive behavior of some new eco-friendly pigment alternatives in surface coatings"

Ву

Walaa Mohamed Abd El-Gawad

Thesis advisors	Approval
Prof.Dr. Eglal Maryiam Raymond Souaya()
Professor of Inorganic Chemistry, Faculty of Science	ce, Ain Shams University
Prof.Dr. Nivin Mohamed Ahmed Hussein ()
Professor of polymers and pigments, National Resea	arch Centre

Head of Chemistry Department

Prof. Dr. Hamed Ahmed Younes Derbala

Acknowledgment

First and foremost, I would like to thank "ALLAH" for giving me the opportunity and the strength to accomplish this work.

I would like to express my deepest gratitude, appreciation and respect to:

Prof. Dr. Eglal Raymond Souaya, for her supervision, pleasant guidance and encouragement through this work.

Prof. Dr. Nivin Mohamed Ahmed, for suggesting the subject of study, her endless efforts, and continuous supervision during all phases of this work.

Finally, many thanks are due to all people who encouraged me, gave me the will to work and the desire to continue, especially my family, asking Allah to save them all.

Title	Page No.
Summary	I
Chapter I	1
Part A: Introduction	
1.1. Corrosion	1
1.2. Corrosion protection methods	3
1.2.1. Cathodic protection	3
1.2.2. Anodic protection	4
1.2.3. Corrosion inhibitors	4
1.2.4. Barrier protection	5
1.3. Pigment	7
1.3.1. Classification of pigments	8
1.3.1.1. Organic Pigments	8
1.3.1.2. Inorganic Pigments	9
1.3.2. Roles of pigments	11
1.3.3. Anti-corrosive pigments	12
1.4. Binders	15
1.4.1. Alkyd binder	15
1.4.2. Epoxy binder	17
1.5. Solvent	19
1.6. Core shell technology	19
1.6.1. Classification of core/shell particle	20
1.6.2. Synthesis of core-shell particles	21

1.7. Ferrite pigments	22	
1.8. Kaolin	24	
1.8.1. Advantages of kaolin in industrial coatings	25	
1.9. Silica fumes waste	25	
1.9.1. Silica fume source	26	
1.9.2. Physical properties	27	
1.9.3. Chemical composition and chemical process	27	
1.9.4. Mechanisms of silica	28	
1.9.5. Advantages of using silica fume	28	
1.9.6. Health hazards of silica fume	29	
1.9.7. The problems of silica fume	29	
Chapter I	31	
Part B: Literature Survey		
1. Core-shell anticorrosive pigments	31	
2. Ferrites as anticorrosive pigments	36	
3. Kaolin in anticorrosive paints	47	
4. Silica fume in anticorrosive paints	54	
Chapter II	64	
Experimental		
2.1. Materials	64	
2.1.1. Inorganic Chemicals	64	
2.1.1.1. Zinc Nitrate	64	
2.1.1.2. Calcium Nitrate	64	
2.1.1.3. Strontium Nitrate	64	
2.1.1.4. Ferric Nitrate	64	
2.1.1.5. Kaolin	65	

2.1.1.6. silica fume	65
2.1.2. Solvents	66
2.1.2.1. Xylene rectified	66
2.1.2.2. Toluene rectified	66
2.1.2.3. Methyl ethyl ketone	67
2.2. Pigments preparation	67
2.2.1. Preparation of Ferrite pigments	67
2.2.2. Preparation of Ferrite/Kaolin (Fe/K) core-shell	67
pigments	
2.2.3. Preparation of Ferrite/silica (Fe/Si) core-shell	68
pigments	
2.3. Pigment evaluation	68
2.3.1. Specific gravity	68
2.3.2. The oil absorption test	69
2.3.3. Hydrogen Ion Concentration (pH value)	70
2.3.4. Bulking volume	70
2.4. Methods of instrumental analysis	7 1
2.4.1. XRD analysis	71
2.4.2. TEM analysis	7 1
2.4.3. SEM/EDAX analysis	71
2.4.4. XRF analysis	72
2.4.5. TGA	72
2.4.6. EIS	72
2.5. Preparation of anticorrosive paint formulations	73
2.6. The effects of the prepared pigments on the mechanical	
properties of paints and corrosion of steel	74

2.6.1. Determining the resistance of paints against impact	75
2.6.2. Determination of paint resistance against cupping	
in Erichsen apparatus	75
2.6.3. Determination of paint hardness	75
2.6.4. Determining the degree of coating adhesion by	76
means of a cross-cut test	
2.6.5. Immersion in salt solution 3.5%	76
Chapter III	78
Part A: Characterization and analysis	
3.1. Characterization of ferrite pigments	78
3.1.1. XRD analysis of ferrite pigments	78
3.1.2. Electron microscopy analysis of ferrite pigments	80
3.1.2.1. TEM of ferrite pigments	81
3.1.2.2. SEM of ferrite pigments	82
3.1.3. TGA of ferrite pigments	82
3.2. Characterization of Ferrite/Kaolin (Fe/K) core-shell	84
pigments	
3.2.1. XRD analysis of Fe/K core-shell pigments	84
3.2.2. Electron Microscopy analysis of Fe/K core-shell	87
pigments	
3.2.2.1. TEM of Fe/K core-shell pigments	88
3.2.2.2. SEM of Fe/K core-shell pigments	89
3.2.3. XRF analysis of Fe/K core-shell pigments	90
3.2.4. EDAX analysis of Fe/K core-shell pigments	91
3.2.5.TGA of Fe/K core-shell pigments	95

3.3. Characterization of Ferrite/Silica (Fe/Si) core-shell	98
pigments	
3.3.1. XRD analysis of Fe/Si core-shell pigments	98
3.3.2. Electron Microscopy analysis of Fe/Si core-shell	100
pigments	
3.3.2.1. TEM of Fe/Si core-shell pigments	101
3.3.2.2. SEM of Fe/Si core-shell pigments	102
3.3.3. XRF analysis of Fe/Si core-shell pigments	103
3.3.4. EDAX analysis of Fe/Si core-shell pigments	104
3.3.5. TGA of Fe/Si core-shell pigments	107
Chapter III	110
Part B: physical properties	
3.4. physical properties	110
3.4.1. Ferrite pigments	110
3.4.2. Ferrite/Kaolin (Fe/K) core-shell pigments	111
3.4.3. Ferrite/Silica (Fe/Si) core-shell pigments	112
Chapter III	114
Part C: Applications	
3.5. Applications in medium oil alkyd paints	115
3.5.1. Ferrite pigments	115
3.5.2. Ferrite/Kaolin (Fe/K) core-shell pigments	126
3.5.3. Ferrite/Silica (Fe/Si) core-shell pigments	142
3.5.4. Physical & mechanical properties of the different	158
pigments in alkyd paints	
3.6. Applications of the prepared pigments in epoxy-based	
paints	

3.6.1. Ferrite pigments	166	
3.6.2. Ferrite/Kaolin (Fe/K) core-shell pigments	176	
3.6.3. Ferrite/Silica (Fe/Si) core-shell pigments	186	
3.6.4. Physiccal & mechanical properties of different	202	
pigments in epoxy paints		
Conclusion	208	
Reference	211	
Publications		
Arabic Summary		

List of Abbreviations

Component	Symbol
ZnFe ₂ O ₄	ZnFe
CaFe ₂ O ₄	CaFe
SrFe ₂ O ₄	SrFe
Kaolin	K
Ferrites/Kaolin	Fe/K
ZnFe ₂ O ₄ /Kaolin	ZnFe/K
CaFe ₂ O ₄ /Kaolin	CaFe/K
SrFe ₂ O ₄ /Kaolin	SrFe/K
Silica	Si
Ferrites/Silica	Fe/Si
ZnFe ₂ O ₄ /Silica	ZnFe/Si
CaFe ₂ O ₄ /Silica	CaFe/Si
SrFe ₂ O ₄ /Silica	SrFe/Si
Micron	μ
Weight loss	Wt. loss
X-ray diffraction	XRD
Transmission Electron Microscopy	TEM
Scanning Electron Microscopy	SEM
Energy Dispersive X-ray analysis	EDAX
X-ray Fluorescence Analysis	XRF

List of Abbreviations

Thermal Gravimetric Analysis	TGA
Electrochemical Impedance Spectroscopy	EIS
Pigment/binder ratio	P/B
Specific gravity	Sp.Gr.
Bulking volume	BV
Methyl ethyl ketone	MEK

No. of Figures	Title	Page No.
1	Illustration of the corrosion process of steel in	2
	the presence of water, oxygen, and electrolyte	
2	Multi-layered system of the coatings	5
3	The effect of the sun's ultraviolet light in (a)	11
	absence of pigments, (b) presence of pigments	
4	Scheme illustrating the anticorrosion protection	13
	of pigments via physical effects	
5	Scheme illustrating the anticorrosion protection	14
	of pigments via chemical effects	
6	Scheme illustrating the anticorrosion protection	15
	of pigments via electrochemical effects	
7	Core-shell particles	20
8	Schematic of the ferrite (spinel) unite cell	23
	structure (a) and two sub cells (b)	
9	A schematic presentation of the kaolinite crystal	24
	structure	
10	Equivalent electrical circuit used to fit the EIS	73
	data of coating	
11	XRD chart of ZnFe	79
12	XRD chart of CaFe	79

13	XRD chart of SrFe	80
14	TEM micrographs of ferrite pigments	81
15	SEM micrographs of ferrite pigments	82
16	TGA chart of ZnFe	83
17	TGA chart of CaFe	83
18	TGA chart of SrFe	84
19	XRD chart of Kaolin	85
20	XRD chart of ZnFe/K	85
21	XRD chart of CaFe/K	86
22	XRD chart of SrFe/K	86
23	TEM micrographs of Fe/K pigments	88
24	SEM micrographs of Fe/K pigments	89
25	EDAX analysis of ZnFe/k	92
26	EDAX analysis of CaFe/k	93
27	EDAX analysis of SrFe/k	94
28	TGA chart of Kaolin	96
29	TGA chart of ZnFe/K	96
30	TGA chart of CaFe/K	97
31	TGA chart of SrFe/K	97
32	XRD chart of Silica	98
33	XRD chart of ZnFe/Si	99
34	XRD chart of CaFe/Si	99
35	XRD chart of SrFe/Si	100
36	TEM micrographs of Fe/Si pigments	101

37	SEM micrographs of Fe/Si pigments	102
38	EDAX analysis of ZnFe/Si	104
39	EDAX analysis of CaFe/Si	105
40	EDAX analysis of SrFe/Si	106
41	TGA chart of Silica	107
42	TGA chart of ZnFe/Si	108
43	TGA chart of CaFe/Si	108
44	TGA chart of SrFe/Si	109
45	Corrosion laboratory test results of Group I	118
	containing ferrite pigments in alkyd after 28	
	days immersion in 3.5 % NaCl	
46	Corrosion laboratory test results of Group II	121
	containing ferrite pigments in alkyd after 28	
	days immersion in 3.5 % NaCl	
47	Corrosion laboratory test results of Group III	124
	containing ferrite pigments in alkyd after 28	
	days immersion in 3.5% NaCl	
48	Corrosion laboratory test results of Group I	129
	containing Fe/K core-shell pigments in alkyd	
	after 28 days immersion in 3.5% NaCl	
49	Corrosion laboratory test results of Group II	132
	containing Fe/K core-shell pigments in alkyd	
	after 28 days immersion in 3.5% NaCl	

50	Corrosion laboratory test results of Group III	135
	containing Fe/K core-shell pigments in alkyd	
	after 28 days immersion in 3.5 %NaCl	
51	Nyquist plots of paint formulations containing	137
	kaolin and Fe/K core-shell pigments	
52	Corrosion laboratory test results of Group I	145
	containing Fe/Si core-shell pigments in alkyd	
	after 28 days immersion in 3.5% NaCl	
53	Corrosion laboratory test results of Group II	148
	containing Fe/Si core-shell pigments in alkyd	
	after 28 days immersion in 3.5% NaCl	
54	Nyquist plots of paint formulations containing	150
	silica and Fe/Si core-shell pigments	
55	Corrosion laboratory test results of Group III	155
	containing Fe/Si core-shell pigments in alkyd	
	after 28 days immersion in 3.5% NaCl	
56	Hardness of group I in alkyd	160
57	Hardness of group II in alkyd	161
58	Hardness of group III in alkyd	161
59	Ductility of group I in alkyd	162
60	Ductility of group II in alkyd	163
61	Ductility of group III in alkyd	163
62	Impact of group I in alkyd	164
63	Impact of group II in alkyd	164