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Summary

It is well known that a normed space E is uniformly convex (smooth)
normed space if and only if its dual E* is uniformly smooth (convex).
We extend these geometric properties to seminormed spaces and then
introduce definitions of uniformly convex (smooth) countably semi-
normed spaces. A new vision of the completion of countably semi-
normed space was helpful in our task. We get some fundamental links
between Lindenstrauss duality formulas. A duality property between
uniform convexity and uniform smoothness of countably seminormed
space is also given.

Also we give a definition of countably normed space associated with
countably seminormed space with compatible seminorms and a defini-
tion of Metric projection in a countably seminormed space.

This M. Sc. thesis is organized as follows:

1. Introduction, we show the importance of locally convex spaces
and we give a general view of what we have been done in this
thesis.

2. In chapter #1, we give a summary of topolpgical spaces [1], a
directed system [1], topological vector spaces [2], Hausdorff topo-
logical vector Spaces [2] and quotient topological vector spaces [2]
almost of the details needed in this thesis.

3. In chapter #2, we study locally convex spaces [2], seminorms [2]
and metrizable topological vector spaces [2].

4. In chapter #3, we study completion of different spaces (Met-
ric space [5], normed space by using the technique of associated
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normed space of a seminormed space which is the associated Haus-
dorff space of a seminormed space and countably normed spaces).

5. In chapter #4, we study uniformly convex Banach space, the
modulus of convexity, uniformly smooth Banach space [3, 4, 13]
almost of the details needed in this thesis and uniformly convex
(smooth) countably normed spaces [9, 18].

6. In chapter #5, we give a brief history of Metric projection exis-
tences and uniqueness in different spaces (Hilbert space [3], uni-
formly convex Banach space [14, 15, 16] and countably normed
space [9, 18]).

7. In chapter #6, we give new definitions and prove new results
published in [17]. In fact, we define new types of spaces, the
so called uniformly convex and uniformly smooth countably semi-
normed spaces. We discuss some geometric properties for these
new spaces and we prove one of the most important results which
is “a countably seminormed space F is uniformly convex if and
only if all dual spaces E;n are uniformly smooth”. It is our pur-
pose in this chapter to first extend the notion of uniform con-
vexity and uniform smoothness for Banach spaces to countably
seminormed spaces. Moreover, by extending some theorems for
uniformly convex uniformly smooth Banach spaces to the case of
countably seminormed space, we prove the existence of the met-
ric projection point in uniformly convex countably seminormed
space.



Introduction

With a few exceptions the locally convex spaces are the most gen-
eral spaces in analysis which contain normed spaces, countably normed
spaces and countably seminormed spaces. Locally convex spaces can
be divided into two classes. First, there are the normed spaces, which
belong to classical functional analysis, and whose theory can be con-
sidered essentially closed. The second class consists of the so-called
nuclear locally convex spaces, which were introduced in 1951 by A.
Grothendieck. The two classes have a trivial intersection, since it can
be shown that only finite dimensional locally convex spaces are simul-
taneously normable and nuclear [1].

In this thesis we have generalized some nice geometric properties
and definitions from normed spaces into countably seminormed spaces.
Thus, as the definitions of uniformly convexr and uniformly smooth
which play a very important role in the theory of normed spaces (see
chapter 4). Also, we generalize the notion of a metric projection (see
chapter 5) in countably seminormed spaces which is very important in
the theory of fixed point of noun self mapping.



Chapter 1

Topological Vector Spaces

We begin with basic definitions and some lemmas which will be
needed in the sequel.

1.1 Topological Spaces and A directed system (Net)

Definition 1 ([1])

A topology 7 is a family of subsets given on a set M if to each element
x € M, there correspond a non-empty system U, (z) of subsets which
satisfies the following conditions:

(Uy) If U € U (x), then x € U.

(Usy) For finitely many sets Uy, ..., Un € U,(x) there is a set U € U,(x)
with U C Uy, ..., U,. )

(Us) Each set U € U,(x) contains a subset U € U,(x) such that for
each element y € U there is a set V € U,(y) with V C U.

A set with a topology is called a topological space.

Definition 2 ([1])

A subset U of a topological space M is called a neighborhood of the
element x if there is a set Uy € U (z) with Uy C U. U.(z) is then
referred to as a fundamental system of neighborhoods of the
element = (local base of x).

Definition 3 ([1])
A topology 11 is finer than a topology T if each To-neighborhood of an
arbitrary element x € M 1is also a T -neighborhood. The topology T5 s
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then said to be coarser than the topology 7. Two topologies on a set
M are equal if all elements x € M have the same neighborhoods.

Definition 4 ([1])

A topology can be introduced on each subset M of a topological space M
by taking the collection of intersections U = M NU with U € U.(z) as
a fundamental system of neighborhoods for each element x € M. This
15 called the topology induced on M by M.

Definition 5 ([1])
A directed system (x,) in a topological space M is a set of elements
To € M which are uniquely associated with the elements of an index set
A. For certain pairs of indices a and [ in A, a relation o > [ (read:
a is greater than [3) is defined which has the following properties:
(Gy) For o, 8,y € A, a > [ and B > v always imply o > .
(Gy) For finitely many indices o, - -+ ,ap, € A, there is an index o € A
with « > oy, 1=1,--- ,n.

Directed systems over the set of natural numbers are called se-
quences.

A directed system (x,) converges to an element x € M, if for each
neighborhood U € U, (x) there is an index o € A such that

o €U for a > ay.

This is written
limz, = x,
o

and x is designated as the limit of the directed system (z,,).

Definition 6 ([1])

A subset G of a topological space M is open if for each element x € G
there is a set U € U, (x) with U C G. The empty set is considered
open.

Definition 7 ([1])

The closed hull S of an arbitrary subset S of a topological space
M consists of all elements x € M for which every intersection S N U
with U € U,(z) is non-empty. Fach subset is contained in its closed
hull. Those subsets which coincide with their closed hull are said to be
closed. The empty set is considered closed as well as open.
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Definition 8 A subset D of a topological space M is dense in M if
its closed hull D coincides with M. A topological space is separable if
it contains a countable dense subset.

1.2 Basic definitions

Let E be a vector space over the field of complex numbers C (in short,
a vector space). Let

Ay EXE—E, (z,y)—x+y,

My:Cx E—E, (\z)— Az,

be the vector addition and the scalar multiplication in F.

Definition 9 ([2])
A topology ¥ on E is said to be compatible with the linear struc-
ture of E if A, and M are continuous when we provide E with the
topology T, E x E with the product topology T x ¥, and C x E with the
product topology £ x %, where £ is the usual topology in the complex
plane C.

E becomes a topological vector space ("TVS”), if it is provided
with a topology compatible with its linear structure.

Proposition 10 ([2])

The fundamental system U, (x) of neighborhoods of the element x is the
family of sets V + x, where V wvaries over the fundamental system of
neighborhoods of the neutral element, U, (0).

Definition 11 ([2])

A subset A of a vector space E is said to be absorbing if to every
x € E there is a number ¢, > 0 such that for all A € C with |\ < ¢,
we have Ax € A.

Definition 12 ([2])
A subset A of a vector space E is said to be balanced if for every
z € A and every A\ € C with |\| < 1, we have Az € A.

Theorem 13 ([2])
A fundamental system U,(0) on a vector space E is compatible with the
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linear structure of E if and only if it has the following properties:
1-The origin belongs to every subset U belonging to U, (0).
2-To every U € U,(0) there is V € U,(0) such that V +V C U.
3-For every U € U,(0) and for every A € C with X\ # 0, we have
AU € U,(0).
4-Every U € U.(0) is absorbing.
5-Every U € U,(0) contains some V € U,(0) which is balanced.

Any neighborhood of zero is a union of balanced sets which are neigh-
borhood of zero.

If E is 7TVS”, then there exist a basis of neighborhood of zero of
balanced sets.

Proposition 14 ([2])
There is a basis of neighborhoods of zero in a "TVS” E which consists
of closed sets.

Proof: It suffices to show that an arbitrary neighborhood U of zero
in E contains a closed neighborhood of 0. Let V' be another neighbor-
hood of 0 such that V. —V C U. Claim V C U. Indeed, let x € V,
which means that every neighborhood of x, in particular V + x, meets
V. Thus, there are elements y,z € V such that z = x +y. In other
words,

r=z—yeV-VcU.

Corollary 15 ([2])
There is a basis of neighborhoods of 0 in E consisting of closed balanced
sets.

Proof: FEvery neighborhood U of 0 in E contains a closed neigh-
borhood of 0, V', which contains a balanced neighborhood W of 0. Then
W is closed and balanced; W C 'V C U.

Proposition 16 ([2])

In a 7TVS” E, if a vector subspace M s open, we have M = F.
FEvery proper subspace of TVS E is closed.
Proof: M being open is a neighborhood of each one of its points,

i particular of the origin, hence must be absorbing. But, if \x € M
with A # 0, then x = A1 (\x) € M.

Definition 17 ([2])
We call a directed system (x,) from a "TVS” E, a Cauchy-system,

10
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if for each zero neighborhood U € U.(0) there is an index o with
To —xg €U for a,B > ay.

Each convergent directed system is a Cauchy-system. If the converse
of this statement is also valid then the "TVS” is called complete.

1.3 Hausdorff Topological Vector Spaces

Definition 18 ([2])

A topological space X is said to be Hausdorff if given any two distinct
points x and y of X, there is a neighborhood U of x and a neighborhood
V' of y which do not intersect, i.e., such that U NV = ¢.

A very important property of Hausdorff topological spaces is the
so-called uniqueness of the limit:

Lemma 19 ([2])
A directed system (x,) with a € A, on a Hausdorff topological space X,
converges to at most one point.

Proof: Suppose that (x,) with o« € A on X would converge to
two distinct points x and y. Let U (resp. V') be a neighborhood of x
(resp. y) such that U NV = ¢. Then there exist oy € A such that
To €U for a > ay and as € A such that x, € V for a > as. Hence
their intersection is nonempty which is a contradiction.

Lemma 20 ([2])
In a Hausdorff space, any set consisting of a single point is closed.
Proof: Using the definition of limit point.

Remark 21 ([2])
There are topological spaces with the same property which are not Haus-
dorff; but such spaces are not "TVS”, as will be seen.

Definition 22 ([2])
Let E be a non empty set. A topology ™ = {U C E : the complement of
U is a finite subset of E} is called the Cofinite topology on E.

Exzample 23 (]2])
Cofinite topology on infinite set.

11
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Proposition 24 ([2])
A "TVS” E is Hausdorff if and only if to every point x # 0 there is a
netghborhood U of 0 such that x ¢ U.

Proof: The necessity condition is trivial. Suppose it is satisfied.
Let x,y be two distinct points of E, which means that xt —y # 0. Then
there is a neighborhood U of 0 such that x —y ¢ U. Choose a balanced
netghborhood V' of 0, such that V +V C U. Since V 1is balanced, we
have =V =V, hence V. —V C U. Suppose that the intersection

V+z)n(V+y) #¢

Let z be one of its points: z =z +2',z =y +y, with ',y € V. We
have
r—y=y -2 eV-Vel,

which contradicts our choice of U. Thus (V 4+ x) N (V +vy) = ¢.

Proposition 25 ([2])
In a "TVS” E, the intersection of all neighborhoods of the origin is a
vector subspace of E, which is the closure of the set {0}.

Corollary 26 ([2])
For a 7TVS” E to be Hausdorff, it is necessary and sufficient for the

set {0} to be closed in E, or that the complement of the origin be open
m E.

Indeed, to say that {0} is closed in E is equivalent to say that
N = {0} or that no point z # 0 may belong to all the neighborhoods
of 0.

Proposition 27 ([2])
Let f,g be two continuous mappings of a topological space X into a
Hausdorff "TVS” E. The set A in which f and g coincide,

A= o€ X: /) = 9o},

18 closed in X.
Proof: A is the preimage of the closed set {0} C E under the
continuous mapping r — f(x) — g(x).

12
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Proposition 28 ([2])
Let X, E, f, g be as in the previous proposition. If f and g are equal on
a dense subset Y of X, they are equal everywhere in X.

Proof: f = g on a closed subset of X (previous proposition) con-
taining Y.

1.4 Quotient Topological Vector Spaces

Let M be a vector subspace of E, and let us consider the quotient
vector space F//M and the canonical map ¢ : E — E/M which assigns
to every x € F its class ¢(z) modulo M or z + M.

A topology on /M which is called the quotient topology on E/M
is defined as a subset U of E/M is a neighborhood of zero if and only
if there is a neighborhood U of zero in I/ whose image under ¢ is equal
to U, i.e., U = ¢(U). The neighborhoods of zero in E/M are the direct
images under ¢ of the neighborhoods of 0 in E.

Lemma 29 ([2])
The canonical map ¢ is continuous.

Proof: Let U be a neighborhood of the origin in E/M; there is a
neighborhood U of zero in E such that ¢(U) = U, hence U C ¢~ (U).

Proposition 30 ([2])

Let E be a "TVS”, and M a vector subspace of E. The two following
properties are equivalent:

(a) M is closed;

(b) E/M is Hausdorff.

Corollary 31 ([2])
The "TVS” E/{0} is Hausdorff.

The "TVS” E/ m is called the Hausdorff topological vector space
associated with the "TVS” E. When FE itself is Hausdorft, ¢ : £ —
E/{0} (canonical mapping) is one-to-one and onto, since then {0} =
{0}, and E/{0} is identified with E.

13



Chapter 2

Locally Convex Spaces and
Seminorms.

2.1 Basic definitions

Definition 32 ([2])
A 7TVS” E is said to be a locally convex space if there is a basis
of neighborhoods in E consisting of convex sets.

Locally convex spaces are by far the most important class of
bh) TVS”.

Proposition 33 ([2])
In a locally convex space E, there is a basis of neighborhoods of zero
consisting of barrels. (A barrel set is convex, balanced and absorbent.)

It suffices to prove that every neighborhood of zero contains a neigh-
borhood of zero which is barrel. Let U; be an arbitrary neighborhood
of zero in E. Since E is a ”TVS”, then U; contains a closed neighbor-
hood of 0, say V. Since F is locally convex, then V contains a convex
neighborhood of zero, W; and W contains a balanced neighborhood of
0, say U. Since U is balanced, then the set UI/\\ AU = U. Since W is
convex and the convex hull of U is the smallest closed set contains U,
then the convex hull of [ J;,) AU = U contained in W. Since V' is closed,
then the closure of the convex hull which is a barrel contained in V,
hence in U;.

14



