

College of women for Arts, Science and Education Physics Department

Quantum Dynamics as an Approach to Study Atomic and Molecular Structures of Some of The di-Atomic Molecules

A thesis presented by

Rageh Attia Khalifa Hussien B. Sc. in physics, 2001

for

M. Sc. Degree in Physics

Submitted to

Physics Department
College of women for Arts, Science and Education,
Ain Shams University
2009

College of women for Arts, Science and Education Physics Department

Quantum Dynamics as an Approach to Study Atomic and Molecular Structures of Some of The di-Atomic Molecules

A thesis presented by

Rageh Attia Khalifa Hussien B. Sc. in physics, 2001

Supervisors

Assist. Prof. Dr. Tarek M. El-Desouky

Assist. Prof. Dr. Atif abdulhafiz

Department of physics, College of women, Ain Shams University, Cairo, Egypt Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

Dr. Mohamed Fawzi Zaki

Head of Solid State Unit Experimental Nuclear Physic Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt

بِسُمِ اللهِ الرَّحْمنِ الرَّحِيمِ

[ال عمران (190-191)]

Dedicated

To

My parents (Father and Mother),

My sisters,

My brothers,

My cognates

and

My friends

CONTENTS

Subject	Page
Contents	I
List of Figures	v
List of Tables	VII
Abstract	X
Introduction	1
Chapter One	
1. History and literature review	3
Chapter Two	
2. Theoretical back ground	28
2.1. Molecular physics	28
2.1.1. Molecular Mechanics	29
2.1.2. Electronic Structure Methods	30
2.1.2.a. Semi-empirical method	31
2.1.2.b. Ab initio method	31
2.2. Defining Theoretical model	35
2.3. Component of Theoretical model	38
2.3.1. Method (Theoretical procedure)	38
2.3.2. Basis Set	39
2.4. Types of basis functions	39
2.4.a. Slater type atomic orbitals(STOs)	40
2.4.b. Gaussian type atomic orbitals	40
2.4.1. Minimal Basis Sets	42

2.4.2. Split Valence Basis Sets	.42
2.4.3. Polarized Basis Sets	.43
2.4.4. Diffuse Functions.	.43
2.4.5. High Angular Momentum Basis Sets	44
2.5. The Theoretical Treatment	.45
2.5.1. The Schrödinger Equation	.45
2.5.2. The Molecular Hamiltonian	.48
2.5.3. Atomic Units	.49
2.5.4. The Born-Oppenheimer Approximation	.50
2.5.5. Restrictions on the Wave function	.52
2.6. The Hartree SCF method	.57
2.6.1. The variation theorem (variation principle)	.60
2.6.2. Minimizing the energy; the HF equations	.62
2.6.3. The meaning of the HF equations	.69
2.7. Basis functions and the Roothaan–Hall equations	.72
2.8. Open Shell Methods	.79
2.9. Electron Correlation	.80
2.10 .The configuration interaction	81
2.11. CASSCF Method	.83
Chapter three	
3. Gaussian program	.88
3.1. Running Gaussian	.90
3.1.1 The Route Section	.93
3.1. 2.The Title Section	.93
3.1.3. The Molecule Specification Section	.94

3.1.3a . Charge on the Molecule	94
3.1.3.b. Spin Multiplicity	94
3.1.4 Molecular Structure	95
3.1.5. Drag-and-Drop Execution	103
3.2. Single point energy calculations	104
3.3. Geometry Optimizations	106
3.3.1. Potential Energy Surfaces in Gaussian	107
3.3.2. Locating Minima	108
3.3.3. Convergence Criteria	110
3.3.4. Preparing Input for Geometry Optimizations	111
3.4. Frequency Calculations	112
3.4.1. Input for Frequency Jobs	114
3.4.2. Frequencies output	115
3.4.3. Thermo chemistry	116
3.4.4. Changing Thermo chemistry Parameters	117
3.4.5. Zero-Point Energy and Thermal Energy	117
3.5. Excited states calculations	119
3.6. Software programs packages	124
3.6.1. ACES II22	124
3.6.2. CADPAC	125
3.6.3. Columbus	126
3.6.4. DALTON23	126
3.6.5. Jaguar	127
3.6.6. MOLCAS28	128
3.6.7. MOLPRO	129

3.6.8.Q-Chem	129
3.6.9. ADF	130
3.6.10. DGauss	131
3.1.10.1. MOPAC	131
Chapter four	
4. Running Gaussian and exploring results	132
4.1. Single Point Energy Calculations	132
4.2. Geometry Optimizations	133
4.3. Frequency Calculations	134
4.4. Potential Energy surface of excited states	135
Conclusions	148
References	150
Arabic Summary	

List of Figures

Figure	Captions	Page
2.1	Potential energy between dv ₁ and dv ₂	58
2.2	The coulomb integral represents the	60
	electrostatic repulsion between two charge	
	clouds, due to electron 1 in orbital ψ_i and	
	electron 2 in orbital ψ_j .	
2.3	Illustrating the CAS and RAS orbital	85
	partition	
3.1	File menu for Gaussian program	92
3.2	The job entry window for Gaussian	92
	program	
3.3	Example of input file for Gaussian	99
	program	
3.4	Potential energy surfaces in Gaussian	107
4.1	File input for single point calculation	132
4.2	The calculated potential energy as a	136
	function of internuclear distance for the	
	ground state for Br ₂	
4.3	The calculated potential energy as a	138
	function of internuclear distance for the	
	first excited state for Br ₂ .	

Figure	Captions	Page
4.4	The calculated potential energy as a function of internuclear distance for the	140
4.5	second excited state for Br_2 . The relation between energies and internuclear distances for the ground, first	140
4.6	and second excited state for Br_2 The potential energy as a function of the internuclear distance for the ground state	142
4.7	for HI The potential energy as a function of the internuclear distance for the first excited	144
4.8	state for HI The potential energy as a function of the internuclear distance for the second excited state for HI	146
4.9	excited state for HI. Dependence of the HI potential energies on the internuclear distances for the ground, first and second excited states.	147

List of Tables

Table	Captions	page
2.1	Synopsis of molecular modeling	34
	techniques	
2.2	D ifferent approximation methods.	38
3.1	The process menu of Gaussian	101
4.1	Energy and internuclear distance for	135
	the ground state for Br ₂	
4.2	Energy and internuclear distance for	137
	the first excited state for Br ₂ .	
4.3	Energy and internuclear distance for	139
	the second excited state for Br ₂ .	
4.4	Energy and internuclear distance for	141
	the Ground state for HI.	
4.5	Energy and internuclear distance for	143
	the First excited state for HI.	
4.6	Energy and internuclear distance for	145
	the second excited state for HI	

Acknowledgement

I would like to express my praises to almighty **ALLAH**, the most merciful, the most beneficial who bless me sound health and opportunity to complete this thesis. Thanks also for a person I love him very much, the **Prophet Mohammed {God's praise and peace upon}**, who demonstrate the way on the strength of his instructions.

I feel pleasure to express my deep and sincere thanks to my supervisor **Prof. Dr. Ahmad Morsy Ahmad**, Department of Physics, College of women for Arts, Science and Education, Ain Shams University, for his tremendous help, Valuable suggestions and friendly guidance. And I pray to god to give his mercy to him.

Thanks to my supervisor Assist. Prof. Dr. Tarek Mohamed El-Desoky, Department of Physics, College of women for Arts, Science and Education, Ain Shams University, for his many illuminating discussions through the course of the work

Thanks also to Assist. Prof. Dr. Atif abdulhafiz, Department of Applied Mathematics, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt, for his many illuminating discussions through the course of the work

I wish to express my deepest sincerest gratitude to my brother Dr. Mohammed Fawzi Zaki, Department of Experimental Nuclear Physics, Nuclear Research Center, Atomic Energy Authority for his patience, endless help, and support during this

research and his guidance through the early years of chaos and confusion.

Great thanks for **Prof. Dr. Amira Zaki**, head of Physics Department, College of women for Arts, Science and Education, Ain Shams University, for her help and continuous encouragement for me and all young scientists in our department.

I will remember the friendly and encouraging behavior of the entire staff of radiation lab team in Physics Department. I would cordially pay special thanks to, Ahmed Maarouf, N. Mostafa, M. Y. SHOEIB, B. A. El-Badry, L. El-Gamal, D. H. Taha, M. Reda,

Of course, I am grateful to my parents and my sisters for their patience. Without them this work would never have come into existence.

Finally, I wish to thank the following: Department of Experimental Nuclear Physics, Nuclear Research Center, Atomic Energy Authority, staff members of the Physics Department, Faculty of Girls, Ain Shams University; specially, my friends (for all the good and bad times we had together); and my sisters; my family.

Abstract

Quantum Dynamics as an Approach to Study Atomic and Molecular Structures of Some of The di-Atomic Molecules

Rageh Attia Khalifa Hussien, B. Sc. in physics, 2001

The theoretical studies of molecular structure using the methods of quantum mechanics form a vast and very active research area. It would be very difficult to try to cover all recent advances in this area within a single work.

Most of the developments in the associated quantum-mechanics methodology are aimed at providing more and more accurate calculation of the structure of molecules, and this because the difficulties that were found to give the exact solution for Schrödinger equation.

All this theoretical investigation of the molecular structure has introduce Wide range of application to the branch of material science and chemists who interested in this field.

- ** In chapter one Literature Survey has been introduced to cover the molecular physics study from old to modern ideas, beginning with the first attempts to know the atomic and molecular structures of materials and the effort of all scientist that contribute to this subject.
- ** In chapter two all the theories that concerned with the work has been handled beginning with dividing the branch of physics that dealing with molecular structure into two sections:
- Molecular mechanics which use the laws of classical physics.

- Electronic Structure Methods which use the laws of quantum mechanics.

Electronic Structure Methods in turn divided into two sections:

- a) The semi-empirical & b) The Ab-initio
- a) The semi-empirical methods use parameters derived from experimental data to simplify the computation.
- b) The Ab initio methods use no experimental parameters in their computations. Instead, their computations are based only on the laws of quantum mechanics-the first principles referred to in the name ab initio.

Theoretical model came as a tool to explore the investigation of the theories and give the result of work.

Theoretical model are characterized by the combination of:

- a) Method (theoretical procedure) &
- b) Basis set
- a) The theoretical models contain a hierarchy of procedures corresponding to different approximation methods in solving Schrödinger equation.
- b) The basis set can be interpreted as any mathematical functions that can restrict each electron to a particular region of space.

Hartree use the variational principle and build Hartree fock self consistent field method that was finished by Roothaan and Hall and was found to be as a simple and a good approximated method.

Other methods like (CC), (CASSCF),....came later to fix some problems that Hartree fock self consistent field method cannot deal with.