Relations of Epicardial Adipose Tissue Volume, Thyroid Axis Hormones and Microalbuminuria to Coronary Artery Calcium in Type 2 Diabetic Patients

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Endocrinology and Metabolism

BY

Ahmed Mohamed Abd El-Fatah Hamam

Master of Sciences in Endocrinology and Metabolism - Ain Shams University

Supervised by

Prof. Hussein Abd El-Hai El-Orabi

Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

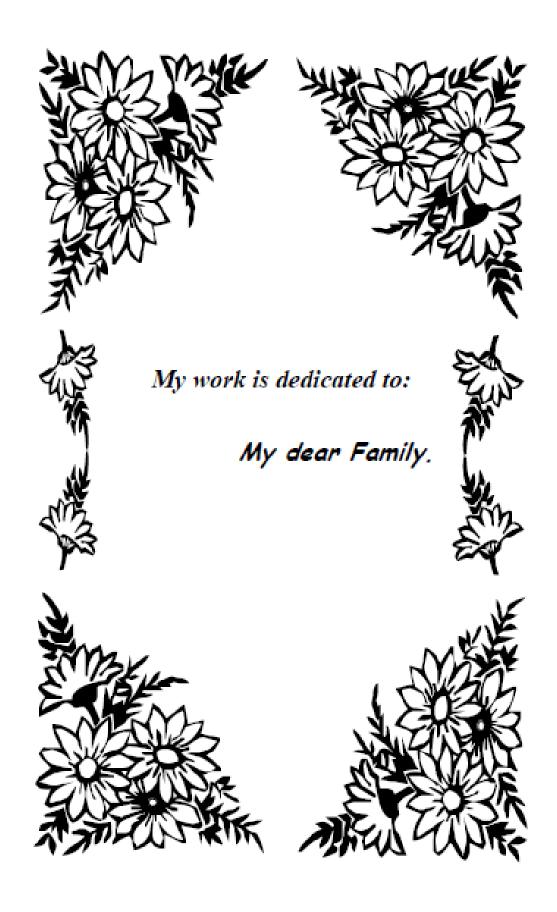
Maj. Gen. (Dr.) Said Abd El-Hafez Mohram

Professor of Cardiology – Military Medical Academy

Dr. Khaled Mahmoud Makbol

Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Dr. Yara Mohamed Eid


Assistant Professor of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Dr. Maram Mohamed Maher

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2014

ACKNOWLEDGMENTS

First of all thanks to **ALLAH** who gives us the gift of knowledge and understand.

I am grateful to **Prof. Hussein Abd El-Hai El-Orabi**, Professor of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for his wide knowledge, understanding, encouraging and personal guidance have provided me with great information to come up with this work. His valuable guidance and long experience have affected the outcome of this work.

I am deeply thankful to **Maj. Gen. Said Abd El-Hafez**, Professor of cardiology, Military medical Academy, for his kind supervision, and great help throughout this work

I am deeply indebted and grateful to **Dr. Khaled Mahmoud Makbol**, Ass. Professor of Internal Medicine and Endocrinology, Faculty
of Medicine-Ain Shams University, for his supervision, continous help,
valuable encouragement and continous guidance.

I am so much obligated to **Dr. Yara Mohamed Eid**, Ass. Professor of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, who offered much of her time and advice through my work in this study. Her kind assistance, great support and sincere cooperation have affected the outcome of this work.

I owe my deepest gratitude to **Dr. Maram Mohamed Maher**, lecturer of Internal Medicine and Endocrinology, Faculty of Medicine-Ain Shams University, for valuable guidance, support, advice and for effort in the presentation of this work.

Lastly but not least I would like to extend my warm thanks to all my professors, staff members and colleagues in the Military Hospitals for their continuous help and support.

CONTENTS

	Page
Acknowledgments	I
List of abbreviations	II
List of figures	VI
List of tables	VIII
Protocol	X
Review of literature	
Chapter 1:	
Adipose tissue	1
Chapter 2:	
Diabetes and cardiovascular disease	32
Chapter 3:	
Diabetes and thyroid hormones.	59
 Thyroid hormones and cardiovascular disease 	74
Chapter 4:	
Coronary artery calcium	81
Patients and methods	96
Results	110
Discussion	
Summary and conclusions	155
Recommendations	159
References	160
Arabic summary	

List of Abbreviations

2h PG	2 hours plasma glucose during OGTT
¹⁸ F-FDG	¹⁸ F-fluorodeoxyglucose
ABPI	The ankle brachial pressure index
ACCF/AHA	American College of Cardiology Foundation/American
	Heart Association
ACCORD	Action to Control Cardiovascular Risk in Diabetes
ACS	Acute coronary syndrome
ADA	American Diabetic Association
ADVANCE	Action in Diabetes and Vascular Disease: Preterax and
	Diamicron Modified Release Controlled Evaluation
AGES	Advanced glycation end products
AITD	Autoimmune thyroid dysfunction
Akt2	Protein kinase B
AMPK	5` adenosine monophosphate activated protein kinase
ANDROMEDA	European Trial of Dronedarone in Moderate to Severe
	Congestive Heart Failure
ANGPTL2	Angiopoietin-like protein 2
ANS	Autonomic Nervous System
ASA	Acetylsalicylic acid
AT	Adipose tissue
AUC	Area under the curve
BAT	Brown adipose tissue
BP	Blood pressure
CAC	Coronary artery calcium
CAD	Coronary artery disease
CAN	Cardiovascular Autonomic Neuropathy
CARDS	Collaborative Atorvastatin Diabetes Study
CCL2	CC-chemokine ligand 2
CCTA	Coronary CT Angiography
CHD	Coronary heart disease
ChREBP	Carbohydrate response element binding protein
C-IMT	Carotid intima media thickness
CRP	C-reactive protein;
СТ	Computed tomography
CVD	Cardiovascular diseases
CXCL5	CXC-chemokine ligand 5
D	Deiodinase
·	

DCCT/EDIC	Diabetes Control and Complications Trial/Epidemiology
BeenEBie	of Diabetes Interventions and Complications
DIAD	Detection of Silent Myocardial Ischemia in
	Asymptomatic Diabetic Subjects
DIO2	Deiodinase type 2
DPP	The Diabetes Prevention Program
EAT	Epicardial adipose tissue
EBCT	Electron beam computed tomography
EISNER	Early Identification of Subclinical Atherosclerosis by
LISINLIK	Noninvasive Imaging Research
FFA	Free fatty acids;
FFAs	Free fatty acids
FIELD	The Fenofibrate Intervention and Event Lowering in
	Diabetes study
FPG	Fasting plasma glucose
FRS	Framingham Risk Score
Gi	Inhibitory G protein
GLUT	Glucose transporter
HATS	The HDL Atherosclerosis Treatment Study
HDL	High density lipoprotein
HIV	Human immunodeficiency virus
ICAM	Intercellular adhesion molecule
IFN	Interferon
IL	Interleukin
IL-1Ra	Interleukin-1 receptor antagonist;
iNOS	Inducible nitric oxide synthase
JNK	c-Jun N-terminal kinase;
LDL	Low density lipoprotein cholesterol
MAU	Microalbuminuria
MCP	Monocyte chemoattractant protein
MDCT	Multi-detector computed tomography
MESA	The Multi-Ethnic Study of Atherosclerosis
MI	Myocardial infarction
MMP	Matrix metalloproitenase;
MRI	Magnetic-resonance imaging
mTOR	Mammalian target of Rapamycin
MDCT	Multidetector computed tomography
NADPH	Nicotinamide adenine dinucleotide phosphate
NAMPT	Nicotinamide phosphoribosyltransferase
NCEP ATP III	National Cholesterol Education Program Adult
	Treatment Panel III Guidelines

NE	Noroninonhrino
	Norepinephrine Nuclear factor frame 0
NF-κβ	Nuclear factor kappa-β
NGF	Nerve growth factor;
NHANES	National Health and Nutrition Examination Survey
n-HDL	Non- high density lipoprotein
NOS	Nitric oxide synthase
PAI	Plasminogen activator inhibitor
PC	Pyruvate carboxylase
PEPCK	Phosphoenolpyruvate kinase
PET	Positron-emission tomography
PGC-1 alpha	PPAR gamma coactivator-1 alpha
PGK	Phosphoglycerate kinase
PKC	The activation of protein kinase C
PPAR	Peroxisome proliferator-activated receptor
PRDM16	Brown adipocyte differentiation transcription factor PR-
	domain-missing16
PREDICT	Patients with Renal Impairment and Diabetes
	undergoing Computed Tomography,
PVAT	Perivascular adipose tissue
OGTT	Oral glucose tolerance test
oxLDL	oxLDL
RANTES	Regulated upon activation normal T cell and secreted
RBP4	Renitol-binding protein 4
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
rT3	Reverse T3
SBP	Systolic blood pressure
sFRP5	Frizzled-related protein 5
SMI	Silent myocardial ischemia
sPLA2-IIA	Secretory type II phospholipase A2
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
T3	Triiodothyronine
TGs	Triglycerides
T _H	T helper
TH	Thyroid hormones
TLRs	Toll-like receptors
TNF	Tumor necrosis factor
TR	Thyroid receptor
TSH	Thyroid-stimulating hormone
1011	Thyrora-summaning normone

UACR	Urinary albumin/ creatinine ratio
UAE	urinary albumin excretion
UCP-1	Uncoupling protein-1
UKPDS	United Kingdom Prospective Diabetes Study
VADT	Veterans Affairs Diabetes Trial
VCAM-1	Vascular cell adhesion molecule-1;
VEFG	Vascular endothelial growth factor;
VLDL	Very low-density lipoprotein cholesterol,
VSMC	Vascular smooth muscle cells
WAT	White adipose tissue
WHO	World Health Organization

List of Figures

		Page
A: Figures	s of the Review:	
Figure (1)	Schematic illustration of adipose tissue	4
Figure (2)	Schematic illustration of a large and small adipose depot	4
Figure (3)	Adipose tissue depots	5
Figure (4)	Components of adipose tissue	7
Figure (5)	Phenotypic modulation of adipose tissue	8
Figure (6)	Microscopic imaging of human epicardial fat	14
Figure (7)	Potential physiological, pathophysiological mechanisms and vasocrine/ paracrine pathways of epicardial fat	17
Figure (8)	Schematic diagram outlining the regulatory balance between adiponectin and leptin on mediators of atherogenesis	30
Figure (9)	Pathogenesis of cardiovascular disease in diabetes	37
Figure (10)	The relation between hyperthyroidism and hyperglycemia via lipid Metabolism oxidative stress and hepatic dysfunction	62
Figure (11)	The relation between hypothyroidism and hypoglycemia mediated by reduced insulin synthesis and impaired hepatic glucose output	63
Figure (12)	Coronary artery calcium scans showing progressively increasing Agatston score	82
B: Figures	of the Results:	
Figure (1)	Gender distribution in all studied patients	109
Figure (2)	Bars chart shows comparison between all studied groups as regard class of epicardial adipose tissue	112
Figure (3)	Bars chart shows comparison between all studied groups as regard class of coronary artery calcium	113
Figure (4)	Bars chart shows comparison between all studied groups as regard hemoglobin A1C	119
Figure (5)	Bars chart shows comparison between all studied groups as regard median HOMA-IR	119
Figure (6)	Bars chart shows comparison between all studied groups as regard mean serum TSH	121

		Page
Figure (7)	Bars chart shows comparison between all studied groups as regard mean free T3.	121
Figure (8)	Bars chart shows comparison between all studied groups as regard median coronary artery calcium	123
Figure (9)	Bars chart shows comparison between all studied groups as regard mean epicardial adipose tissue.	124
Figure (10)	Correlation between CAC and BMI in all studied groups	135
Figure (11)	Correlation between CAC and hemoglobin A1C in all studied groups	135
Figure (12)	Correlation between CAC and HOMA-IR in all studied groups	135
Figure (13)	Correlation between CAC and serum TSH in all studied groups	135
Figure (14)	Correlation between CAC and UACR in all studied group	136
Figure (15)	Correlation between CAC and EAT in all studied groups	136
Figure (16)	Correlation between CAC and HOMA-B in all studied groups	136
Figure (17)	Correlation between CAC and free T4 in all studied groups	136
Figure (18)	Correlation between EAT and BMI in all studied groups	140
Figure (19)	Correlation between EAT and hemoglobin A1C in all studied groups	140
Figure (20)	Correlation between EAT and HOMA-IR in all studied groups	140
Figure (21)	Correlation between EAT and serum TSH in all studied groups	140
Figure (22)	Correlation between EAT and UACR in all studied groups	141
Figure (23)	Correlation between EAT and CAC in all studied groups	141
Figure (24)	Correlation between EAT and free T3 in all studied groups	141

List of Tables

		Page
A: Tables	of the Review:	
Table (1)	Sources and functions of key adipokines	11
Table (2)	Main anatomical and clinical characteristics of epicardial fat	14
Table (3)	Known or attributed physiologic and pathophysiological functions of epicardial fat	16
Table (4)	Epicardial adipose tissue bioactive molecules	20
Table (5)	Difference of the effects of glycemic control in cardiovascular risk reduction in type 2 diabetes	36
Table (6)	Stander categories for CAC score	83
	of the Results:	110
Table (1)	Gender distribution between groups.	110
Table (2)	Comparison between all groups as regard smoking, hypertension and dyslipidemia.	110
Table (3)	Comparison between all studied groups as regard antidiabetic treatments	111
Table (4)	Comparison between all groups as regard their family history of DM, HTN and cardiac disease	111
Table (5)	Comparison between all studied groups as regard class of EAT	112
Table (6)	Comparison between all studied groups as regard class of CAC	113
Table (7)	Comparison between different CAC classes as regard class of epicardial adipose tissue (EAT) class	114
Table (8)	Comparison between the different studied groups as regard some clinical data using ANOVA	114
Table (9)	Comparison between the different studied groups as regard lipid profile using ANOVA	115
Table (10)	Comparison between the different studied groups as regard glucose – insulin profile and serum uric acid using ANOVA	117
Table (11)	Comparison between the different studied groups as regard thyroid profile using ANOVA	119
Table (12)	Comparison between the different studied groups as regard coronary artery calcium (CAC)epicardial adipose tissue	122

		Page
Table (13)	Comparison between the different classes of CAC as regard some clinical data using ANOVA	124
Table (14)	Comparison between the different classes of CAC as regard lipid profile using ANOVA	125
Table (15)	Comparison between the different classes of CAC as regard glucose-insulin profile, uric acid and UACR using ANOVA	127
Table (16)	Comparison between the different classes of CAC as regard thyroid profile using ANOVA:	129
Table (17)	Comparison between the different classes of CAC as regard EAT using ANOVA:	130
Table (18)	Correlation between coronary artery calcium (CAC) and all studied parameters in different groups using Spearman's rank correlation coefficient (rs	132
Table (19)	Correlation between epicardial adipose tissue (EAT) and all studied parameters in different groups using Pearson's correlation coefficient (r):	137
Table (20)	Stepwise regression analysis; Dependent variable: coronary artery calcium	142
Table (21)	Stepwise regression analysis; Dependent variable: Epicardial Adipose Tissue	142

Protocol

Introduction

Visceral adipose tissue (VAT) may be important in sustaining the proinflammatory background of cardiovascular disease. Epicardial, mesenteric and omental fat are the most important VATs and share the same origin from the splanchnopleuric mesoderm (Wang et al., 2012).

Epicardial adipose tissue (EAT) is a special visceral fat depot which surrounds the major branches of the coronary artery and myocardium and is supplied by the coronary artery branches sharing the same myocardial circulation. This close anatomical relationship between EAT and the adjacent coronary artery and myocardium further promotes local paracrine interactions between these tissues (Sacks and Fain, 2007).

Also, EAT is related to impaired fasting plasma glucose levels, insulin resistance and hypertension. In addition, its volume is increased in type 2 diabetes mellitus (T2DM) patients and is associated with unfavorable components of metabolic syndrome and coronary atherosclerosis (Wang et al., 2009).

Cardiovascular disease is the most significant cause of mortality in T2DM and is responsible from 75% of the deaths. The risk of coronary artery disease (CAD) in patients with T2DM is 2 to 4 times higher compared with normal population. The risk of developing MI in patients with DM without history of CAD is identical with persons with CAD without DM (Karabulut et al., 2012).

Microalbuminuria has long been recognized as an important biomarker to predict micro- and macrovascular complications and mortality for patients with T2DM. It is also considered an independent predictor of