Assessment of Thyroid Functions in Viral Hepatitis

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatrics

By **Wael Abdel Rahman Mosaad** M.B, B.CH

Supervisors:


Prof. Dr. Amani Osman Mahmoud

Professor of Pediatrics
Faculty of Medicine -Ain Shams University

Dr. Amany Ahmed Osman

Assistant Professor of Clinical Pathology Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2009

Acknowledgement

In the Name of ALLAH, the Most Beneficent, the Most Merciful. First, I wish to express my greatest thanks to ALLAH.

I wish to express my profound gratitude to *Prof. Dr. Amani Osman Mahmoud*, Professor of Pediatrics,
Faculty of Medicine, Ain Shams University, for her kind supervision, great effort and valuable advices throughout this work. Her great experience added much to my knowledge and without her; this work would have never come out.

My gratitude and thanks to *Prof. Dr. Amany Ahmed Osman*, Assistant Professor of Clinical
Pathology, Faculty of Medicine, Ain Shams University,
for her help, cooperation and meticulous supervision,
which was very essential for this work.

Thank you to all those who shared in a way or another to make the dream of conducting such a study become true.

Last but not least, my thanks to my family for their great assistance, support and help.

Contents

	Page
Introduction and Aim of The Work	1
Review of literature	2
Hepatitis	. 2
HAV	
<i>HBV</i>	_
HCV	
HDV	
HEV	VV
HGV_{\dots}	····· 64
Thyroid gland	66
Thyroid hormones	68
Thyroid gland hormone assay	
Subjects and methods	90
Results	95
Discussion	126
Summary and conclusion	137
Recommendation	139
References	129
Arabic summary	183

List of Tables

Table No.	Title	Page
1	Worldwide endemicity of HAV	
-	infection	. 5
2	Recommended doses of Ig for HAV.	. 12
3	Recommended doses of HAV	
4	vaccineInterpretations of serologic test	. 14
	results for HBV	. 27
5	Hepatitis B immunization	. 37
6	Clinical and laboratory findings of	
7	HAV group Clinical and laboratory findings of	96
8	HBV group Clinical and laboratory findings of	98
9	HCV group Clinical and laboratory findings of	100
10	control groupClinical characteristics of hepatitis	102
	patients	. 104

List of Tables

Table No.	Title	Page
11	Statistical comparison between HA	
	and controls as regards studied	
	parameters and correlation between	
	TSH and FT4 versus each of all	
	studied parameters in the same	
12	groupStatistical comparison between HB	106
	and controls as regards studied	
	parameters and correlation between	
	TSH and FT4 versus each of all	
	studied parameters in the same	
13	groupStatistical comparison between HC	110
	and controls as regards studied	
	parameters and correlation between	
	TSH and FT4 versus each of all	
	studied parameters in the same	
14	groupComparison between HA and HB as	114
	regards TSH & FT4	118
	List of Tables	
Table No.	Title	Page

15	Comparison between HA and HC	
16	as regards TSH & FT4Comparison between HB and HC	118
17	as regards TSH & FT4Comparison between hepatitis A, B	118
	and C patients as regards TSH and	
	FT4 affection and positive anti-	
18	thyroid autoantibody formationRelation between thyroid antibodies	120
	and thyroid functions in patients	
19	with hepatitis ARelation between thyroid antibodies	122
	and thyroid functions in patients	
	with hepatitis C	122

List of Figures

Figure	Title	Page
No.		- 3.63

Fig.(1):	Geographic distribution of the	
	prevalence of HAV	4
Fig.(2):	Events in HAV infection	9
Fig.(3):	Genome of HBV	18
Fig.(4):	Global prevalence of HBV in 2000	19
Fig.(5):	Characteristics of progression to	
	chronic HBV infection	28
Fig.(6):	Global prevalence of HCV in 2003	45
Fig.(7):	Epidemiology of viral hepatitis C in	
	various countries	48
Fig.(8):	Regulation of thyroid hormone	
	release	74
Fig.(9):	Histogram showing mean TSH in	
	different groups and controls	123
Fig.(10):	Histogram showing mean FT4 in	
	different groups and controls	124
Fig.(11):	Histogram showing antithyroid	
	autoantibody formation in different	
	groups and controls	125

List of Abbreviations

AITD Autoimmune thyroid disease

ALP Alkaline phosphatase

ALT Alanine aminotransferase Anti-HBc Hepatitis B core antibody

Anti-HBe Hepatitis B envelope antibody

Anti-HBs Hepatitis B surface antibody

Anti-HCV Hepatitis C antibody Anti-HDV Hepatitis D antibody Anti-HEV Hepatitis E antibody

AST Aspartate aminotransferase

CLT Chronic lymphocytic thyroiditis

DIT Diiodo-tyrosine

DNA Deoxyribonucleic acid

ELISA Enzyme linked immunosorbent assay

EMC Essential mixed cryoglobulinemia

FT3 Free triiodothyronine

FT4 Free thyroxine

GBV-C Hepatitis GGB virus

GGT Gamma glutamyl transpeptidase

GH Growth hormone

GN Glomerulonephritis

GRTH Generalized resistance to thyroid

hormone

HAV Hepatitis A virus

HBc Hepatitis B core antigen

HBeAg Hepatitis B envelope antigen

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus
HCV Hepatitis C virus
HDV Hepatitis D virus
HEV Hepatitis E virus
HGV Hepatitis G virus

HIV Human immunodeficiency virus

HPT Hypothalamic-Pituitary-Thyroid Axis

IC Immune complex

IFN Interferon

IgA Immunoglobulin A
IgG Immunoglobulin G
IgM Immunoglobulin M
IMA Immunometric assay

IRES Internal ribosome entry site

MHC myosin heavy chain MIT Monoiodo-tyrosine

MPGN Membranoproliferative

glomerulonephritis

NANB Non-A-non-B hepatitis

NCR Noncoding regions

NIS Sodium iodide symporter

PAC Papular acrodermatitis of childhood

PAN Polyarteritis nodosa PBI Protein bound iodine

PCR Polymerase chain reaction

RIA Radioimmunoassay

RIBA Recombinant radio-immunoblot assay

RNA Ribonucleic acid

SPRIA Solid-phase radioimmunoassay

TBG Thyroxine-binding globulin

Tg Thyroglobulin TPO Thyroperoxidase

TR Thyroid hormone receptors

TRH Thyrotropin releasing hormone
TSH Thyroid stimulating hormone

TT3 Total triiodothyronine

TT4 Total thyroxin

TBPA Thyroxine-binding prealbumin

WAT White adipose tissue

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND

AIM OF THE WORK

Recently, a high prevalence of autoimmune thyroid disease (AITD) has been reported in hepatitis C virus (HCV) infection independent on alpha-interferon (IFN) therapy. A significant association between HCV infection and AITD was found (*Testa et al.*, 2006).

The prevalence of thyroid disorders has been evaluated in patients with HCV infection by many studies. There are some studies suggesting a careful thyroid monitoring during the follow-up of patients with HCV infection (Antonelli et al., 2006).

Autoantibody formation may also occur in children with chronic hepatitis B virus (HBV) infection. IFN treatment leads to significant antithyroid autoantibody formation (*Kansu et al.*, 2004).

The aim of this study is to detect the influence of viral hepatitis on thyroid functions independent of interferon therapy.