

The Role of MRI in Characterization of Benign Hepatic Focal Lesions

Thesis

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

By

Rawnaq Ahmed Tuayen

M.B.,B.Ch

Supervised by

Prof. Dr. Mohamed Abdul Aziz Ali

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed Hussein

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words can express my deep sincere feelings Towards Prof. Dr. Mohamed Abdul Aziz Ali, Professor of Radiodiagnosis, Faculty of Medicine–Ain Shams University for his continuous encouragement, guidance and support he gave me throughout the whole work. It has been a great honor for me to work under his generous supervision.

I would like to express my deepest appreciation, respect and thanks to Dr. Ahmed Mohamed Hussein, Assistant Professor of Radiodiagnosis, Faculty of Medicine—Ain Shams University, for his continuous guide in all aspects of life beside his great science, knowledge and information. Last but not least, sincere gratitude to My Family for their continuous encouragement and spiritual support.

Contents

Subjects	Page
List of abbreviations	II
List of figures	IV
List of tables	VII
• Introduction	1
Aim of the work	5
• Review of Literature	
♦ Anatomy	6
♦ Pathology	21
♦ Technique	75
Patients and Methods	102
• Results	109
• Illustrative Cases	118
• Discussion	130
Summary and Conclusion	142
• References	145
Arabic Summary	

List of Abbreviations

FLL..... Focal Liver Lesions

MRI Magnetic Resonance Imaging

2D..... Two Dimensions

3D...... Three Dimentions

GRE..... Gradient Recalled Echo

VIBE.....Volumetric Interpolated Breath Hold

Examination

IP..... In Phase

OP.....Out Of Phase

DWI.....Diffusion Weighted Images

ADC..... Apparent Diffusion Coefficient

CSF..... Cerebro-Spinal Fluid

CT......Computed Tomography

Gd-DTPA...... Gadolinium Di ethylene Tri amine Penta-

Acetic Acid

HCC..... Hepatocellular Carcinoma

SPIO Super Paramagnetic Iron Oxide

TE Time Echo

TR..... Time Repetition

U/S Ultrasonography

FNH..... Focal Nodular Hyperplasia

List of Abbreviations

HCA..... Hepatocellular Adenoma

PLAS..... Pyogenic Liver Abscesses

CHFC..... Ciliated Hepatic Foregut Cyst

BCA..... Biliary Cyst Adenoma

HAE..... Hepatic Alveolar Echinococcosis

ROI.....Region of Interest

eTHRIVE..... Enhanced T1 High Resolution Isotropic

Volume Examination

BDH...... Bile Duct Hamartomas

List of Figures

Figure No.	Title	Page
Fig. (1):	Gross right and left anatomical lobes of liver based on falciform ligament	
Fig. (2):	Gross anatomical lobes of the liver	8
Fig. (3):	Liver segmental anatomy according Couinaud classification	
Fig. (4):	Ligaments of the liver	11
Fig. (5):	Simplified scheme of the liver segments relation to the portal vein branches	
Fig. (6):	Normal anatomy of the celiac Artery	13
Fig. (7):	Arrangement of the hepatic venous territor	ries 14
Fig. (8):	Anatomy of the biliary system	15
Fig. (9):	Normal hepatic veins	16
Fig. (10):	Portal vein anatomy	17
Fig. (11):	Sagittal MR images of the liver	18
Fig. (12):	Coronal MR images of the liver	19
Fig. (13):	Normal MR Liver signal intensity on weighted non contrast axial image	
Fig. (14):	Normal MR Liver signal intensity on weighted non contrast axial image	
Fig. (15):	Typical hemangioma	24
Fig. (16):	Giant hemangioma.	26
Fig. (17):	Flash-filling hemangioma with associa perfusional variant.	

List of Figures

Fig. (18):	Sclerosing hemangioma
Fig. (19):	Potential pitfall: solitary sarcoma metastasis mimicking hepatic hemangioma
Fig. (20):	Potential pitfall: pseudowashout of a flash-filling hemangioma with gadoxetate disodium-enhanced MR imaging
Fig. (21):	FNH as "stealth" lesion
Fig. (22):	FNH with central scar; gadoxetate disodium—enhanced MR imaging
Fig. (23):	HCA (HNF-1a-inactivated or steatotic subtype); gadoxetate disodium-enhanced MR imaging
Fig. (24):	HCA complicated by hemorrhage (inflammatory subtype)
Fig. (25):	HCA (inflammatory subtype): "atoll sign." 46
Fig. (26):	HCA (b-catenin-activated subtype) 47
Fig. (27):	Regenerative nodules in a cirrhotic liver 52
Fig. (28):	Pyogenic liver abscess
Fig. (29):	Large pyogenic liver abscess due to intrahepatic rupture of cholecystitis
Fig. (30):	Coronal T2-weighted fat saturation image shows multiple small liver cysts
Fig. (31):	Ciliated hepatic foregut cyst
Fig. (32):	Unenhanced axial T1-weighted gradient-recalled echo three-dimensional image showing an Echinococcus granulosus cyst 65
Fig. (33):	Axial T1-weighted gradient-recalled echo three-dimensional image shows a solitary Echinococcus multilocularis

List of Figures

Fig. (34):	Multiple bile duct hamartomas68
Fig. (35):	Bile duct hamartoma69
Fig. (36):	Biliary cystadenoma72
Fig. (37):	Mucinous biliary cystadenoma73
Fig. (38):	Axial breath-hold in-phase80
Fig. (39):	Schematic illustrates water molecule movement92
Fig. (40):	Axial diffusion-weighted image (b = 50 sec/mm ²)94
Fig. (41):	Graph displays different patterns of enhancement of hemangiomas by dynamic MRI113
Fig. (42):	Graph shows pattern of enhancement of hepatic adenoma by Dynamic MRI114
Fig. (43):	ADC value of benign hepatic focal lesions.116
Fig. (44):	Focal nodular hyperplasia. (Axial images).119
Fig. (45):	Simple hepatic cyst (Axial images)121
Fig. (46):	Giant hemangioma (Axial images)123
Fig. (47):	Liver abscess (axial images)125
Fig. (48):	Hydatid cyst (Axial images)127
Fig. (49):	Hepatic adenoma (Axial images)129

List of Tables

Table No.	Title	Page
Table (1):	Segments numbering of the liver	10
Table (2):	Classification of benign conditions of the liver	22
Table (3):	Proposed Strategy to Improve Single-Sho Echo-planar DW MR Imaging Quality of Liver	the
Table (4):	Age wise distribution of benign hepatic for lesions.	
Table (5):	Sex wise distribution of benign hepatic following.	
Table (6):	Distribution of patient according to multiplicity of benign hepatic focal lesion	as 110
Table (7):	Distribution of patients according to diagnosis.	110
Table (8):	Variable T1WI signal intensities of different MRI lesions.	
Table (9):	Variable T2WI signal intensities of different MRI lesions.	
Table (10):	Mean ADC values of benign liver lesions	116
Table (11)	Post hoc ANOVA test for significant	ice between
	benign focal liver lesions. 117	

Introduction

Nowadays, magnetic resonance plays a key role in management of liver lesions, using a radiation-free technique and a safe contrast agent profile (*Bartolozzi et al.*, 2012).

The heightened soft-tissue resolution and sensitivity to intravenous contrast agents provided by magnetic resonance imaging (MRI) makes it an invaluable problemsolving tool for fully characterizing focal liver lesions (FLL) (*Acay and Bayramoglu*, 2014).

The majority of FLL arising in noncirrhotic liver are benign, even in patients with known extra-hepatic malignancy. Cysts, hemangiomas, focal nodular hyperplasias (FNH), and hepatocellular adenomas (HCA) are the most commonly encountered benign lesions (*Nault, Bioulac–Sage and Zucman–Rossi, 2013*).

A tremendous development of new imaging techniques has taken place during these last years. Maximizing accuracy of imaging in the context of FLL is paramount in avoiding unnecessary biopsies, which may result in post-procedural complications up to 6.4%, and mortality up to 0.1% (*Strassburg and Manns*, 2006).

Definitive characterization by magnetic resonance (MR) imaging may alleviate patient anxiety, drastically alter management in someone, and help avoid unnecessary biopsy or costly follow-up imaging. MR imaging offers important advantages over computed tomography (CT), such as the lack of ionizing radiation and improved soft tissue contrast (*Cogley and Miller*, 2014).

MRI can be used as the primary imaging examination for patients who cannot receive iodinated IV contrast material and patients in whom the liver is the only organ of concern. MRI is useful as a problem solving technique when other imaging studies show equivocal findings (*Lee et al.*, 2006).

The American College of Radiology Appropriateness Criteria assigns the highest rating to MR imaging without and with contrast for characterization of indeterminate liver lesions, regardless of whether the patient is otherwise healthy, has liver disease, or has a known extra hepatic malignancy (*Nelson et al., 2014*).

With the current state of the art technology, magnets of 1.5 Tesla (T) and 3T field strength are considered the standard of reference in providing high-quality and consistent MR images. Giant advances in MRI have been achieved in the last decade in regards to each of the

Introduction

following: hardware (high-performance gradient coils and phased-array surface coils), software (new sequence design and new parallel imaging technology and acceleration techniques), and contrast agents (hepatocyte-specific agents) have made a major impact on imaging of the liver (*Ramalho et al.*, 2007).

The state of the art MRI protocols rely on a combination of fat-suppressed and non-fat-suppressed T2-weighted images (T2-WI), in- and opposed-phase (IP/OP) T1-WI and dynamic pre- and post-contrast fat-suppressed T1-WI (*Fowler, Brown and Narra, 2011*).

The detection and characterization of focal hepatic lesions continues to be a challenge. Magnetic resonance (MR) imaging plays an important role in the evaluation of a wide range of benign and malignant focal hepatic lesions. The use of three-dimensional (3D) gradient-recalled-echo (GRE) sequences such as volumetric interpolated breath-hold examination (VIBE) has improved MR imaging by providing dynamic contrast material—enhanced thin-section images with fat saturation and a high signal-to-noise ratio (*Rofsky et al.*, 1999).

Contrast-enhanced 3D GRE MR imaging demonstrates characteristic enhancement patterns that can be helpful in the diagnosis of various focal hepatic lesions.

Introduction

These enhancement patterns are seen during specific phases of imaging and include arterial phase enhancement, delayed phase enhancement, peripheral washout, ring enhancement, nodule-within-a-nodule enhancement, true central scar, pseudocentral scar, and pseudocapsule (*Hamm et al.*, 1994).

Recently, diffusion-weighted imaging (DWI) sequences have been shown to be an emerging contributor for liver MRI and are being incorporated in most abdominal MR protocols (*Galea, Cantisani and Taouli,* 2013).

The underlying principle is that different biologic tissues exhibit varying levels of restricted water diffusion, dependent on such factors as tissue cellularity and cell membrane integrity (*Koh and Collins*, 2007).

Aim of the Work

The aim of this work is to study the role of MRI in characterization of benign hepatic focal lesions.